

INTEGRATION OF FUNCTIONAL PROGRAMMING AND SPATIAL

DATABASES FOR GIS APPLICATION DEVELOPMENT

Sérgio Souza Costa

Master Thesis in Applied Computing Science, advised by Dr.
Gilberto Câmara

INPE
São José dos Campos

2006

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA

INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

INPE-

INTEGRATION OF FUNCTIONAL PROGRAMMING AND SPATIAL

DATABASES FOR GIS APPLICATION DEVELOPMENT

Sérgio Souza Costa

Master Thesis in Applied Computing Science, advised by Dr.
Gilberto Câmara

“O que é que a ciência tem?
Tem lápis de calcular

Que é mais que a ciência tem?
Borracha pra depois apagar”.

RAUL SEIXAS

Dedico a minha vó:
MARILIS BASILIA DA CONCEIÇÃO, in memorian.

AGRADECIMENTOS

Agradeço a todas pessoas que me ajudaram a vencer mais esta etapa da vida, mais em
especial a três pessoas, que foram mais do que fundamentais no alcance desse sonho:
ao Gilberto Câmara, que sempre confiou em mim e me ajudou onde eu mais precisei.
Ao Miguel, que foi a primeira pessoa, nesse instituto, a acreditar em meu trabalho. E ao
meu amigo Paulo Lima, pelo seu apoio nos primeiros passos rumo a esse trabalho.

Agradeço ainda, ao Instituto Nacional de Pesquisas Espaciais – INPE, pela
oportunidade de estudos e utilização de suas instalações.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, pela
concessão de bolsa de Desenvolvimento Tecnológico Industrial (DTI).

A GISPLAN Tecnologia da Informação, pelo auxilio financeiro de um ano de bolsa
estágio.

A todos os amigos da Divisão de Processamento de Imagem – DPI, pelo verdadeiro
espírito de equipe, onde cito algumas pessoas como: Lubia, Karine, Gilberto Ribeiro,
Ricardo Cartaxo, Leila, João Ricardo, Hilcea, Ana Paula, Isabel e Julio entre outros, que
de uma forma ou de outra ajudaram na conclusão desse trabalho.

Aos meus pais, Antonio e Iracema, que me educaram, me apoiaram em todos momentos
da vida e ainda por todo amor dado, um eterno obrigado. Aos meus irmãos, Gilberto
Aparecido, Maria, Marli, Toninho, Fernando, Rinaldo, Vanda e Marcio, por todo apoio
e amizade. E aos meus queridos sobrinhos e cunhados. E a minha estimada vó, in
memorian, Marilis, pela grande mulher que foi e a quem eu devo a bela família que
tenho.

Aos meus grandes amigos: Adair, Danilo, Evaldinolia, Karla, Olga, Eduilson, Érica,
Joelma, Vantier, Thanisse, Fábio, Missae, Fred e Javier, por sua verdadeira amizade.

Um muito obrigado, a todas as pessoas citadas acima e minhas desculpas a quem eu
deixei de citar.

INTEGRAÇÃO DE PROGRAMAÇÃO FUNCIONAL E BANCO DE DADOS
ESPACIAIS NO DESENVOLVIMENTO DE APLICATIVOS GEOGRÁFICOS

RESUMO

A pesquisa recente em geoinformação indica que há benefícios no uso de programação

funcional aplicada ao desenvolvimento de aplicativos geográficos. No entanto, o

desenvolvimento completo de um sistema de geoinformação em linguagem funcional

não é factível. O acesso a banco de dados geográfico exige um grande conjunto de

operações de entrada e saída, de difícil implementação em linguagens funcionais. Essa

dissertação apresenta um aplicativo que integra uma linguagem funcional (Haskell) com

banco de dados espacial (TerraLib). Esta integração permite o desenvolvimento, em

uma linguagem funcional, de aplicativos geográficos que manipulem dados em um

banco de dados espacial. Esse aplicativo foi usado no desenvolvimento de uma Álgebra

de Mapas, que mostra os benefícios do uso desse paradigma em geoinformação. Nosso

trabalho mostrou que existem muitas vantagens no uso de uma linguagem funcional,

especialmente Haskell, no desenvolvimento de aplicativos geográficos mais expressivos

e concisos. Combinando Haskell e TerraLib, nós permitimos o uso de programação

funcional em problemas reais, e tornamos o Haskell uma ferramenta ainda mais

amplamente usada no desenvolvimento de aplicativos geográficos.

INTEGRATION OF FUNCTIONAL PROGRAMMING AND SPATIAL
DATABASES FOR GIS APPLICATION DEVELOPMENT

ABSTRACT

Recently, researchers in GIScience argued about the benefits on using functional

programming for geospatial application development and prototyping of novel ideas.

However, developing an entire GIS in a functional language is not feasible. Support for

spatial databases requires a large set of I/O operations, which are cumbersome to

implement in functional languages. This thesis presents an application that interfaces a

functional language with a spatial database. It enables developing GIS applications

development in a functional language, while handling data in a spatial database. We

used this application to develop a Map Algebra, which shows the benefits on using this

paradigm in GIScience. Our work shows there are many gains in using a functional

language, especially Haskell, to write concise and expressive GIS applications.

Combining Haskell and TerraLib enables the use of functional programming to real-

life GIS problems, and is a contribution to make Haskell a more widely used tool for

GIS application development.

TABLE OF CONTENTS

Page

1. INTRODUCTION... 17

2. THEORETICAL FOUNDATIONS ... 20
2.1 Functional Programming... 20
2.2 A Brief Tour of the Haskell Syntax ... 22
2.3 I/O in Haskell using Monads ... 26
2.4 Foreign Language Integration.. 30
2.5 Algebraic Specification and Functional Programming ... 33
2.6 Functional Programming for Spatial Databases and GIS Applications 35

3. TERRAHS... 38
3.1 Introduction .. 38
3.2 System Architecture .. 39
3.3 Spatial Data Types... 43
3.4 Spatial Operations... 47
3.5 Spatial Database Access.. 50

4. A GENERALIZED MAP ALGEBRA IN TERRAHS... 53
4.1 Introduction .. 53
4.2 Tomlin’s Map Algebra: a brief review... 53
4.3 Research challenges for map algebra... 55
4.4 Spatial predicates as a basis for Map Algebra .. 56
4.5 The Open GIS Coverage in Haskell... 56
4.6 Map Algebra Operations ... 59
4.7 Map Algebra Operations in TerraHS ... 60
4.8 Application Examples ... 64
4.8.1 Storage and Retrieval ... 64
4.8.2 Examples of Map Algebra in TerraHS.. 65
4.9 Discussion of the Results... 69

5. CONCLUSION AND FUTURE WORKS.. 71

REFERENCES ... 73

FIGURE LIST

Figure 3.1 - TerraHS: General View.. 38
Figure 3.2 - TerraHS Architecture... 39
Figure 3.3 – Using the disjoint operation... 41
Figure 3.4 – Haskell Hello World Program ... 42
Figure 3.5 – A simple TerraHS program. .. 42
Figure 3.6 – Second TerraHS program. ... 43
Figure 3.7 - Vector representation - source: Casanova {, 2005 #20}............................ 43
Figure 3.8 - Example of the use of the vector data types.. 44
Figure 3.9 - A cell space graphic representation .. 45
Figure 3.10 – A cell space in TerraHS... 45
Figure 3.11 – Example of use geometry data type ... 46
Figure 3.12 - Example of use GeoObject data type.. 46
Figure 3.13 - Topologic operations.. 48
Figure 3.14 - Centroid operation ... 48
Figure 3.15 - Example of overlay operation .. 49
Figure 3.16 – Example of metric operations .. 49
Figure 3.17 - Using the TerraLib to share a geographical database, adapted from Vinhas

e Ferreira (2005).. 50
Figure 3.18 - TerraLib database drivers - source: Vinhas and Ferreira {, 2005 #18}.... 50
Figure - 3.19 - Acessing a TerraLib database using TerraHS 51
Figure 4.1-Spatial operations (selection + composition).Adapted from {Tomlin, 1990

#129} .. 60
Figure 4.2 – Deforestation, Protection Areas and Roads Maps (Pará State) 66
Figure 4.3 – The classified coverage ... 67
Figure 4.4 – Deforestation mean by protection area... 68
Figure 4.5 – Deforestation mean along the roads... 69

 17

CHAPTER 1

INTRODUCTION

Developing geographic information systems is a complex enterprise. GIS applications

involve data handling, algorithms, spatial data modeling, spatial ontologies and user

interfaces. Each of these presents unique challenges for GIS application development.

Broadly speaking, there are three main parts on a GIS application. Spatial databases

provide for storage and retrieval of spatial data. User interfaces include the well-

established WIMP methaphor (windows, icons, mouse and pointers), as well as novel

techniques such as direct manipulation and virtual reality. Between the interface and the

database, we find many spatial algorithms and spatial data manipulation. These include

techniques such as map algebra, spatial statistics, location-based services and dynamical

modeling.

The diversity of data manipulation techniques, as well as the various ways of

combining them, is an intimidating problem for GIS developer. Therefore, to build

successful GIS application we must resort to the well-known “divide and conquer”

principle. It is best to break a complex system into modular parts and design each part

separately. If these parts are built in a proper way, they can be combined in different

ways to build efficient and successful GIS applications. As Meyer(1999) defines, a

component is “a software element that must be usable by developers who are not

personally known to the component’s author to build a project that was not foreseen by

the component’s author.”

Research in Geographic Information Science has shown than many spatial data

manipulation problems can be expressed as algebraic theories (Tomlin, 1990; Egenhofer

e Herring, 1991; Frank e Kuhn, 1995; Güting, T. De Ridder et al., 1995; Frank, 1997;

Erwig, Güting et al., 1999; Frank, 1999; Medak, 1999; Güting, Bohlen et al., 2003;

Winter e Nittel, 2003). These algebraic theories formalize spatial components in a

rigorous and generic way. This brings a second problem: how to translate an algebraic

 18

specification into a programming language. Ideally, the resulting code should as

expressive and generic as the original algebraic specification. In practice, limits of the

chosen programming language interfere in the translation. For example, the Java

programming language is unable to express generic data types. Similar problems arise

in other languages, such as C++ and C# (Hughes, 1989).

As an answer to the challenges of translation of algebraic specifications into

computer languages, there has been a growing interest in functional languages.

Functional programming is so called because a program consists entirely of functions

(Hughes, 1989). The main program itself is written as a function which receives the

program’s input as its argument and delivers the program’s output as its result. Features

of modern functional languages also include list-processing functions, higher-order

functions, lazy evaluation and support for generic programming. These features allow a

close association between abstract specifications and computer code. The resulting

programs are more concise and more accurate. Since the modules are smaller and more

generic, they can be reused more widely (Hughes, 1989).

Recently, researchers in GIScience have argued about the benefits of functional

programming for geospatial application development and prototyping of novel ideas

(Frank e Kuhn, 1995; Frank, 1997; Frank, 1999; Medak, 1999; Winter e Nittel, 2003).

Among the proposed benefits of functional programming for GIS is the ability to build

complex systems from small parts (Frank e Kuhn, 1995). Each of these small parts is

expressed as an algebra and developed in a rigorous and testable fashion. The resulting

algebras are abstract building blocks which can be combined to create more complex

solutions.

However, developing an entire GIS in a functional language is not feasible.

Support for spatial databases needs a large set of I/O operations, which are cumbersome

to implement in functional languages. Event-driven user interfaces are better

implemented with callback protocols and are difficult to specify formally. It is also not

practical to double services already available in imperative languages such as C++ and

 19

Java. This is especially true for spatial databases, where applications such as

PostGIS/PostgreSQL offer a good support for spatial data management.

Our hypothesis is that to integrate functional programming and spatial

databases for GIS application development, we should build a functional GIS on top of

an existing spatial database support. We then use each programming paradigm in the

most efficient fashion. We rely on imperative languages such as C++ to provide spatial

database support and we use functional programming for building components that

provide data manipulation algorithms.

To assess our hypothesis, we have built TerraHS, an application development

system that enables developing geographical applications in the Haskell functional

language. TerraHS uses the data handling abilities provided by TerraLib. TerraLib is a

C++ library that supports different spatial database management systems, and that

includes many spatial algorithms. As a result, we get a combination of the good features

of both programming styles. Our hypothesis is tested by developing a Map Algebra

using TerraHS.

This thesis describes our work to corroborate our hypothesis. We briefly review

the literature on functional programming and its use for GIS application development in

Chapter 2. We describe how we built TerraHS in Chapter 3. In Chapter 4, we show the

use of TerraHS for developing a Map Algebra. We close the work (in Chapter 5) by

pointing out future lines of research.

 20

CHAPTER 2

THEORETICAL FOUNDATIONS

This chapter presents the foundations for our work. Given that functional programming

may be unfamiliar to the reader, we present a brief tour of the Haskell syntax, to help in

understanding of our work in Chapters 3 and 4. We also present important references

that link functional programming and GIS.

2.1 Functional Programming

Almost all programs currently developed use imperative programming. Imperative

programming uses assignment of values to variables and explicit control loops, and is

supported by languages such as C++, Java, Pascal, and FORTRAN. In this work, we

highlight functional programming, which considers that computing is evaluating

mathematical functions. Functional programming stresses functions, in contrast with

imperative programming, which stresses changes in state and sequential commands

(Hudak, 1989). Backus (1978) presents a comparison between the functional and

imperative programming styles. According to Backus, imperative languages are

versions of the Von Neumann computer:

“.. use variables to imitate the computer's storage cells; control statements

elaborate its jump and test instructions; and assignment statements imitate its

fetching, storing, and arithmetic”.

Consider an imperative program that calculates the sum of all members in a list, in

written in the imperative language C:

sum = 0;
for (int i = 0; i < n ; i++)
 sum = sum + list[i];

This program has several properties:

• Its statements act on an invisible "state" according to complex rules.

 21

• It is not hierarchical. Except for the right side of the assignment statement, it

does not compose complex entities from simpler ones. (Larger programs,

however, often do.)

• It is repetitive. One must mentally execute it to understand it.

• It computes word-at-a-time by repetition (of the assignment) and by change (of

variable i).

• Part of the data, n, is in the program; thus it lacks generality and works only for

lists of length n.

The functional equivalent (in Haskell) does not have any variable updates.

sum [] = 0
sum (x:xs) = x + (sum xs)

This program version uses two important features in functional language:

recursion and pattern matching. Pattern matching is the act of checking for the presence

of a given pattern. Standard patterns include variables, constants, the wildcard pattern,

patterns for tuples, lists, and algebraic constructors. The first line says the sum of an

empty list is 0. In the second line, (x:xs) stands for a list as a tuple. The head of the

list is x and the rest of the list is xs. The second line reads: “The sum of a non-empty list

is the sum of the first member with the rest of the list”.

Functional programming is different from imperative programming. Functional

programming contains no side effects and no assignment statements. A function

produces a side effect if it changes some state other than its return value. For example, a

function that prints something to the screen has side effects, since it changes the value

of a global variable. Backus (1978) considers that a functional program has important

advantages over its imperative counterpart. A function program: (a) acts only on its

arguments; (b) is hierarchical and built from simpler functions; (c) is static and

nonrepetitive; (d) handles whole conceptual units; (e) employs idioms that are useful in

many other programs.

 22

LISP (Mccarthy, 1963) was the first functional programming language. Recent

functional languages include Scheme, ML, Miranda and Haskell. In this work we will

uses the Haskell as programming language in the TerraHS software application

presented in Chapter 4. The Haskell report describes the language as:

“Haskell is a purely functional programming language incorporating many

recent innovations in programming language design. Haskell provides higher-

order functions, nonstrict semantics, static polymorphic typing, user-defined

algebraic datatypes, pattern-matching, list comprehensions, a module system, a

monadic I/O system, and a rich set of primitive datatypes, including lists, arrays,

arbitrary and fixed precision integers, and floating-point numbers” (Peyton Jones,

2002).

Haskell is a typeful programming language. It offers a rich type system, and

enforces strong type checking. It is also a safe language. According to Pierce, “a safe

language protects its own abstractions and makes it impossible to shoot yourself in the

foot while programming” (Pierce, 2002). For detailed description of Haskell, see

(Peyton Jones, 2002), (Peyton Jones, Hughes et al., 1999) and (Thompson, 1999).

2.2 A Brief Tour of the Haskell Syntax

This section provides a brief description of the Haskell syntax. This description will

help the reader to understand the essential arguments of this work. For the rest of this

section, we use Hudak et al(1999), (Peyton Jones, 2001) and (Daume, 2004).

2.2.1 Functions and Lists

Functions are the core of Haskell. Consider the add function, shown below. It takes two

Integer values as input and produces a third one. The first line defines its signature

and the second defines its implementation.

 add :: Integer → Integer → Integer
 add x y = x + y

Lists are a commonly used data structure in Haskell. The list [1,2,3] in Haskell is

shorthand for the list 1:2:3:[], where [] is the empty list and : is the infix operator

 23

that adds its first argument to the front of its second argument (a list). Functions in

Haskell can also have generic (or polymorphic) types, and most list functions are

polymorphic. The following function calculates the length of a generic list, where [a]

is a list of members of a generic type a, [] is the empty list, and (x:xs) is the list

composition operation:

length :: [a] → Integer

 length [] = 0

 length (x:xs) = 1 + length xs

This definition reads “length is a function that calculates an integer value

from a list of a generic type a. Its definition is recursive. The length of an empty list is

zero. The length of a nonempty list is one plus the length of the list without its first

member”. The definition also shows the pattern matching features of Haskell. The

length function has two expressions, which are evaluated in the order they are declared.

Haskell lists can also be defined by a mathematical expression similar to a set

notation:

 [x | x <- [0..100], prime x]

This expression defines “the list of all prime numbers between 0 and 100”. This

is similar to the mathematical notation

{ x | x ∈ [0..100] ∧ prime (x) }

This expression is useful to express spatial queries. Take the expression:

 [elem | elem <- (domain map) , (predicate elem obj)]

It reads “the list contains the members of a map that satisfy a predicate that

compares each member to a reference object”. This expression could be used to select

all objects that satisfy a topological operator (“all roads that cross a city”). A further

example is the following implementation of quicksort:

 24

quicksort :: [a] → [a]

quicksort [] = []

quicksort (x:xs) = quicksort [y | y <- xs, y<x]

++ [x]

++ quicksort [y | y <- xs, y>=x]

2.2.2 Data Types

Haskell has strict type checking. Each value has an associated type. Haskell provides

built-in atomic types: Integer, Char, Bool, Float and Double. From these types

one can define types such as Integer→Integer (functions mapping Integer to

Integer), [Integer] (homogeneous lists of integers) and (Char,Integer)

(character, integer pairs).

The user can define new types in Haskell using the data declaration, which

defines a new type, or the type declaration, which redefines an existing type. For

example, take the following definitions:

 type Coord2D = (Double, Double)
 data Point = Point Coord2D
 data Line2D = Line2D [Coord2D]

In these definitions, a Coord2D type is shorthand for a pair of Double values.

A Point is a new type that contains one Coord2D. A Line2D is a new type that

contains a list of Coord2D. Type definitions can be recursive. Here is a simple

declaration of an algebraic data type and a function accepting an argument of the type,

which shows the basic features of algebraic data types in Haskell:

data Tree a = Leaf a | Branch (Tree a) (Tree a)
size :: Tree a → Integer
size (Leaf x) = 1
size (Branch r l) = 1 + size r + size l

 25

2.2.3 Higher-Order Functions

An important feature of Haskell is higher-order functions. These are functions that have

other functions as arguments. For example, the map higher-order function applies a

function to a list, as follows:

 map :: (a→b) → [a] → [b]
 map f [] = []
 map f (x:xs) = f x : map f xs

This definition can reads as “take a function of type a→b and apply it

recursively to a list of a, getting a list of b”. One example is applying a function that

doubles the members of a list:

map (double) [1, 2, 3, 4] ⇒ [2, 4, 6, 8]

The map higher-order function is useful for GIS operations, since many of the

GIS operations are transformations on lists. A simple example is a function that

translates all the coordinates of a line.

type Line = [(Double, Double)]
translate :: (Double, Double) → [Line] → [Line]
translate (x,y) lin = map add (x,y) lin
 where add (x1,y1) (x2,y2) = ((x1+x2),(y1+y2))

Note the auxiliary add function defined by the where keyword.

2.2.4 Overloading and Type Classes

Haskell supports overloading using type classes. A definition of a type class uses the

keyword class. For example, the type class Eq provides a generic definition of all types

that have an equality operator:

 class Eq a where
 (==) :: a → a → Bool

This declaration reads "a type a is an instance of the class Eq if it defines is an

overloaded equality (==) function." We can then specify instances of type class Eq

using the keyword instance. For example:

 26

instance Eq Coord2D where

 ((x1,x2) == (y1,y2)) = (x1 == x2 && y1 == y2)

Haskell also supports a notion of class extension. An example is a class Ord

which inherits all the operations in Eq, but in addition includes comparison, minimum

and maximum functions:

 class (Eq a) => Ord a where
 (<), (<=), (>=), (>) :: a → a → Bool
 max, min :: a → a → a

Type classes are the most unusual feature of Haskell’s type system. Type classes

have proved extraordinarily convenient in practice (Hudak, Peyton Jones et al., 2007),

since they are extensible and type-safe.

2.3 I/O in Haskell using Monads

The final purpose of a spatial database application is to cause a side effect, such writing

a new record in a database. However, side effects cause problems in functional

languages (Peyton Jones, 2001). Things like “print a string to the screen” or “read data

from a file” are not functions in the pure mathematical sense. Therefore, Haskell gives

them another name: actions (Daume, 2004). Actions are part of a more general notion of

computation. A computation is more general notion than a function. It includes issues

such as dealing with failures and telling about success. A computation also includes the

issues of sequencing. In essence, we need to represent success and failure. Also, we

need a way to combine two successes. Finally, we need to be able to augment a previous

success (if there was one) with some new value (Daume, 2004). We can fit this all into a

class as follows:

class Computation c where
success :: a -> c a
failure :: String -> c a
sequence :: c a -> c b -> c b
combine :: c a -> (a -> c b) -> c b

Computation is a type class which is parameterized on a type c. It has four

actions. The success function takes a value of type a and returns it wrapped up by c,

 27

representing a successful computation. The failure function takes a String (error

message) and returns a computation representing a failure. The sequence function is

used to support a sequence of unrelated actions. It enables a computation of type c a to

be followed by a computation of type c b and still keep the correct result type. For

example, we can build a sequence of actions that print a character on a screen and then

save the same character on a file. The combine function enables using the result of an

action to be used as the input for another action. We may read a character on a screen

and then print the resulting value. It has two inputs: a previous computation (namely, c

a) and a function which maps the value of that computation (the a) to a new

computation (c b). It returns a new computation (c b) (Daume, 2004).

The notion of computation is expressed more formally in Haskell by the idea of

monads. Wadler (1990) proposed monads for structuring programs written in functional

languages, based in the work of Eugenio Moggi (1991). The use of monads enables a

functional language to simulate an imperative behavior with state control and side

effects (Thompson, 1999). To define monads in Haskell, we use a shortened version of

Computation:

class Monad m where
return :: a -> m a
fail :: String -> m a
(>>) :: m a -> m b -> m b
(>>=) :: m a -> (a -> m b) -> m b

The functions return and fail match success and failure of the

Computation class. The symbols (>>) and (>>=) match our definitions of sequence

and combine, discussed above. An important example of a monad is the I/O monad,

which deals with computations that affect the “state” of the world. The key notion is the

idea of a type IO a. A computation of type IO a does some I/O, then produces a value

of type a. For example, the function getChar has type IO Char, since it does some

I/O and returns a type Char. The function main (the main program loop in Haskell)

has type IO(), since it does some I/O and returns nothing. Thus we can express the type

IO a as:

type IO a = World -> (a, World)

 28

This type definition says that a value of type IO a is a function that, when

applied to an argument of type World, delivers a new World with a result of type a

(Peyton Jones, 2001). For instance, a function that prints something to the screen causes

an effect in this World and returns it. In this case the World is a screen, but it could be a

file, a database or some other I/O device.

helloworld :: IO ()
helloworld = print “Hello World”

Imagine that we want to write a little more sophisticated “hello world” program

in Haskell. Our function takes a user’s input and then prints the given input. This needs

the I/O monad, which is an instance of a Monad for the I/O type:

instance Monad IO where
 return a = ...
 m >>= k = ...
 fail s = ioError (userError s)

Monadic I/O treats a sequence of I/O commands as a computation that interacts

with the outside world. The program specifies an action, which the compiler turns into

real I/O. For example, we can use the combine function (>>=) to get a line from the

screen and print it:

printName :: IO ()
printName = getLine >>= print

The combine function (>>=) is also described as “bind”. When the compound

action (a >>= f) is performed, it performs action a, takes the result, applies f to it to

get a new action, and then performs that new action (Peyton Jones, 2001). Suppose that

now we want to precede the getLine function by a message to user using by the

print function. We can’t use the combinator (>>=), because (>>=) expects a

function with two arguments as its second argument, and not a function with just one

argument. We must use the sequence function (>>). This function simply consumes

the argument of the first action, throws it away, and carries out the next action. Now we

can write.

printName :: IO ()
printName = print "Enter a string" >> getLine >>= print

 29

Haskell has syntactic support for monadic programming, called the do notation.

This notation is a simple translation to the (>>=,>>) functions. The syntax is much

more convenient, so in practice everyone uses do notation for I/O-intensive programs in

Haskell. But it is just notation! (Peyton Jones, 2001). Using the do notation we can

write printName as follows

printName :: IO ()
printName = do

print "Enter a string"
line <- getLine
print line

A further example of a monad is the Maybe monad, which deals with

computations that might not succeed.

data Maybe a = Nothing
| Just a

instance Monad Maybe where

return x = Just x
(Just x) >>= f = f x
Nothing >>= _ = Nothing
fail _ = Nothing

The Maybe monad is a polymorphic algebraic data type. In case of failure, it uses

the Nothing constructor; in case of success, it uses the Just constructor, with a value

of type a. Suppose we want to write a function that finds a value in a given list and that

treats errors graciously. This function can be written as:

find :: (Eq a) => a -> [a] -> Maybe a
find _ [] = Nothing
find x (y:ys)
 | (x == y) = Just y

 | otherwise = find x ys

In resume, the concept of monads is extremely powerful, and allows a rigorous

definition of the notion of computation. Using monads, functional programming can be

extended to include models of computation formely typical of imperative programming

(Jones e Wadler, 1993).

 30

2.4 Foreign Language Integration

One feature that many applications need is the ability to call procedures written in some

other language from Haskell, and preferably vice versa (Hudak, Peyton Jones et al.,

2007). Interaction with other languages is crucial to any programming language. For

example, GIS applications make extensive use of spatial data management that is

offered by applications such as PostGIS/PostgreSQL written in C language. It is

unrealistic to develop such support using functional programming; instead, we want to

make it easy to call them. Chakravarty (2003) proposed the Haskell 98 Foreign

Function Interface (FFI), which supports calling functions written in C from Haskell

and the order reversed. The FFI treats C as a lowest common denominator: once you

can call C you can call almost anything else (Hudak, Peyton Jones et al., 2007).

Suppose a function that plots a point in the screen written a C language.

void plotPoint (double x, double y);

We can call this procedure from Haskell, under the FFI proposal:

foreign import ccall plotPoint :: Double → Double → IO()

As usual, we use the IO monad in the result type of plotPoint to tell that

plotPoint may perform I/O, or have some other side effect. However, some foreign

procedures may have purely functional semantics. For example, consider the disjoint

topologic operation applied to two points.

 bool disjoint (double x1,double y1, double x2, double y2);

This function has no side effects. In this case it is tiresome to force it to be in the

IO monad. So the Haskell FFI allows one to use the unsafe keyword, and omit the “IO”

from the return type, thus (Peyton Jones, 2001):

foreign import ccall unsafe disjoint :: Double →
Double → Double → Double → Bool

Haskell types can be used in arguments and results just in types such as Int,

Float, Double, and so on. However, most real program use memory references or

pointers as an abstract object representation, structured types or arrays. For instance,

consider the following structure data type.

 31

struct Point {
double x y;

}

The Point structure contains two attributes, x and y, which represent the

Cartesian coordinates. The disjoint topologic operation takes two arguments of the Point

data type structure.

bool disjoint_p (Point* p1, Point* p2);

Haskell provides the Ptr data type to represent a pointer to an object, or an array

of objects. For instance, consider the following definition:

type PointPtr = Ptr ()

This is equivalent in C language to:

typedef void *PointPtr;

However, this approach rules out distinguishing between different objects. To

improve this, we can define typed pointers (Peyton Jones, 2001; Chakravarty, 2005).

data Point = Point
type PointPtr = Ptr Point

As a result, pointers to objects are typed; we can then use different type class

instances for different objects (Chakravarty, 2004). We can call the disjoint topologic

operation (disjoint_p) under the FFI:

foreign import ccall unsafe disjoint_p :: PointPtr →
PointPtr → Bool

To simplify code development, there are some tools available, called foreign

function interface preprocessors for Haskell. These preprocessores simplify the task of

interfacing Haskell programs with external libraries written in C Language. Some

examples are (Yakeley, 2006):

• GreenCard: Green Card is a foreign function interface preprocessor for

Haskell, simplifying the task of interfacing Haskell programs to external

libraries (which are normally exposed via C interfaces).

 32

• HaskellDirect: HaskellDirect is an Interface Definition Language (IDL)

compiler for Haskell, which helps interfacing Haskell code to libraries or

components written in other languages (C). An IDL specification specifies the

type signatures and types expected by a set of external functions. One important

use of this language neutral specification of interfaces is to specify COM

(Microsoft's Component Object Model) interfaces, and HaskellDirect offers

special support for both using COM objects from Haskell and creating Haskell

COM objects.

• C→→→→Haskell: A lightweight tool for implementing access to C libraries from

Haskell.

• HSFFIG: Haskell FFI Binding Modules Generator (HSFFIG) is a tool that takes

a C library include file (.h) and creates Haskell Foreign Functions Interface

import declarations for items (functions, structures, etc.) defined in the header.

• Kdirect: A tool to simplify linking C libraries to Haskell. It is less powerful

than HaskellDirect, but easier to use and more portable.

These preprocessors deal with the interface between Haskell and C. However,

there are many libraries implemented in object-oriented languages, such as C++ or Java.

Some authors teach how to map object-oriented languages to Haskell (Peyton Jones,

Meijer et al., 1998; Finne, Leijen et al., 1999; Meijer e Finne, 2000; Shields e Jones,

2001; Chakravarty, 2004). These works point out that some features of object-oriented

languages cannot be encoded directly in Haskell, such as inheritance and overloading.

They present a way of calling of methods from object-oriented languages in a

syntactically convenient type-safe manner. The authors encode class inheritance via

phanton types and type class. Object-oriented overloading is encoded via name-

mangling, closed class and multiparameter type class. Chakravarty (2004) presents how

to bind Haskell and Objective-C. Meijer (2000) discusses integration between Haskell

and Java.

 33

2.5 Algebraic Specification and Functional Programming

In this section we discuss the relation between functional programming and algebraic

specification. Guttag (1978) presents algebraic specification as tool to define abstract

data types. The specification consists of a set of functions, where the values of the type

are created and inspected only by calls to these functions. This allows the

implementation to be changed without any changes to the external type interface.

Algebraic specifications consist of three parts: a type, a set of operations and axioms,

that describe how the operations are apply in specific data type.

Functional programming languages are convenient to translate algebraic

specifications into testable code (Frank e Kuhn, 1995; Frank e Medak, 1997).

Functional languages express the semantics of abstract data types directly, an essential

property for formal specification languages (Frank e Kuhn, 1995). To explain this point,

consider a data type in Haskell:

data Point = Pt Double Double

Point is a concrete data type, where Pt defines a constructor to this data type.

A constructor is an operator that builds new objects. In this case the constructor takes

two arguments of type Double. We can instantiate this definition inside a Haskell

program:

pt1 = Pt 20.3 50.5

Suppose we want to change the Pt constructor to take a single argument:

data Point = Pt (Double, Double)

This change will impact other programs that reference the Point data type,

since this definition is implementation-dependent. Abstract data types hide the

implementation from the user, and its data is only accessible through a set of operations.

In Haskell, we can define these abstract data type as a type class:

class Points a where
createPoint :: Double → Double → a
getX :: a → Double
getY :: a -> Double

 34

In this example, the type class Points has three operations: one constructor

(createPoint) and two observers (getX and getY). An observer is an operator that

lets you examine an object without changing it. We can then instantiate the type class

Points and create a concrete data type:

data Point = Pt Double Double
instance Points Point where

createPoint x y = Pt x y
…

The same operations could be defined to other implementation of the Point

data type:

data Point = Pt (Double, Double)
instance Points Point where

createPoint x y = Pt (x, y)
…

An algebraic specification can be applied to more than one abstract type,

creating multisorted algebras. Frank (1999) and Lin (1998) propose using multisorted

algebras for specifying GIS applications. We can implement multisorted algebras in

Haskell, using a type class with multiple parameters. Suppose that we want to describe

an interface to deal with points without specifying how their coordinates are expressed

(such as integers or floats). We can define a type class Points with multiple

parameters:

class Points p a where
createPoint :: a → a → p
getx :: p → a
gety :: p → a

This type class can be instantiated to different data types:

data DbPoint = DbPt Double Double
instance Points DbPoint Double
…

or

data InPoint = InPt Int Int
instance Points InPoint Int
…

 35

2.6 Functional Programming for Spatial Databases and GIS Applications

Research in Geographic Information Science has shown than many spatial data

manipulation problems can be expressed as algebraic theories (Tomlin, 1990; Egenhofer

e Herring, 1991; Frank e Kuhn, 1995; Güting, T. De Ridder et al., 1995; Erwig, Güting

et al., 1999; Güting, Bohlen et al., 2003). This leads to a growing interest in using

functional languages for GIS application development. (Frank, 1997; Frank, 1999;

Medak, 1999; Winter e Nittel, 2003; Frank, 2005)

Frank and Kuhn (1995) show the use of functional programming languages as

tools for specification and prototyping of Open GIS specifications. The authors discuss

the pros and cons of using functional languages for writing specification. The main

advantage is their expressiveness: formal specifications can be translated directly into

executable programs. and extensibility. The authors consider that functional languages

lack certain desirable properties: they are not designed for a formal verification of

specifications, nor for version management, or for documentation and cooperation in

teams. However, there are no reasons why such tools could not be constructed for a

functional language. As example, the authors presented the Point data type specification

in a functional language. The specifications focus on equality operations, leaving

additional operations on points (such as a distance) unspecified.

Winter and Nittel (2003) present the results and experiences of applying a

functional language as formal tool to writing specifications for the Open GIS proposal

for coverages. The authors compare the functional language with UML in specification

of geographic systems. The work shows how to map the Open GIS Coverage UML

classes to Haskell classes and function declarations. This mapping allows the authors to

discuss consistency, correctness and completeness of the Open GIS coverage

specification. Medak (1999) develops an ontology for life and evolution of spatial

objects in an urban cadastre. Based in category theory, (Frank, 2005), demonstrates how

to extend and generalize Tomlin´s Map Algebra to apply uniformly for spatial,

temporal, and spatio-temporal data. In his view, a map layer and a time series are

functors, which map operations on single values (sum, mean and so on) to operations on

 36

layers and time series. To these authors, functional programming languages satisfy the

key requirements for specification languages, having expressive semantics and allowing

rapid prototyping. Translating formal semantics is direct, and the resulting algebraic

structure is extendible.

As an example, consider the algebra of moving objects proposed by Güting et al

(2003). They define a basic type moving point (mpoint) as a mapping between a

temporal reference and a spatial location:

mpoint = time → point

A moving point can be used to describe how a car moves along a road. This basic

type can have several functions, including:

at: mpoint × time → point

minvalue: mpoint → point

start, stop: mpoint → time

duration: mpoint → real

trajectory: mpoint → line

A simple implementation of the mpoint data type in Haskell is:

type Mpoint = [(Time, Point)]

where Time and Point are suitably defined classes. Supposing the pairs (Time,

Point) are ordered by Time, then coding these functions in Haskell is simple. For

example, take the trajectory function:

 trajectory :: MPoint → Line
 trajectory mp = [snd (pr) | pr ← mp]

 The snd function extracts the second member of the pair (Time, Point).

Thus, it is straightforward to move from an algebraic specification to its equivalent code

in Haskell. The simplicity of this translation has led to many authors to conclude that

Haskell is suitable for geospatial application development (Frank e Kuhn, 1995; Frank,

1997; Frank, 1999; Medak, 1999; Winter e Nittel, 2003). However, these works do not

deal with issues related to I/O and to database management. Thus, they do not provide

 37

solutions applicable to real-life problems. To apply these ideas in practice, we need to

integrate functional and imperative programming, as we describe in the next chapter.

 38

CHAPTER 3

TERRAHS

3.1 Introduction

In this Chapter, we present the design and implementation of TerraHS, a software

application that enables developing geographical applications in functional

programming using data stored in a spatial database. TerraHS links the Haskell

language to the TerraLib GIS library. TerraLib is a class library written in C++, whose

functions provide spatial database management and spatial algorithms. TerraLib is free

software (Vinhas e Ferreira, 2005). TerraHS can be compiled in Linux or Windows

platforms, where the requirements in both platforms are: ghc-6.4.1 (Glasgow Haskell

compiler) or later, TerraLib-3.1.0, MySQL-4.1 and gcc-3.4.2. In Windows and in the

Linux, the libraries TerraLib and MySQL should be compiled for gcc GNU compiler.

That restriction is necessary because ghc linker requires the libraries provided by the

gcc compiler, and does not support other compilers, such as Microsoft’s Visual C++.

TerraHS includes access to three basic resources for geographical applications: spatial

representations, spatial operations and spatial databases, as shown in Figure 3.1.

Figure 3.1 - TerraHS: General View

 39

We present the TerraHS architecture in Section 3.2. In sections 3.3, 3.4 and 3.5

we describe the main TerraHS resources.

3.2 System Architecture

TerraHS links to TerraLib using the Foreign Function Interface (FFI) (Chakravarty,

2003) and to additional code written in C (TerraLibC), which maps the FFI to

TerraLib methods. In the Figure 3.2, lighter colors represent the parts built in this work

and darker colors represent the existing components.

Figure 3.2 - TerraHS Architecture

Lower layers provide basic services over which upper layer services are

implemented. In the bottom layer, TerraLib supports different spatial database

management and many spatial algorithms. In the second layer, TerraLibC maps the

Terralib C++ methods to the Haskell FFI. In the third layer, the FFI enables calling the

TerraLibC functions from Haskell. The two last layers contain a set of Haskell modules,

which develop functional applications in Haskell using TerraLib. Haskell programmers

normally use modules to build large programs. We group the modules in two main

directories: TerraHS and Algebras. The TerraHS directory contains the following

subdirectories:

• TerraLibH: contains the modules that map TerraLib C++ classes to Haskell

data types and functions, TeGeometry.hs, TeDatabase.hs and so on.

 40

• Misc: contains the modules that provide auxiliary functions to TerraHS, such as

Time.hs and Generic.hs.

The Algebras directory contains algebras to support other Haskell programs.

There is a main algebra, called base algebra, which provides basic spatial database

management and spatial operations. In this work we have also built a map algebra,

presented in Chapter 4. Other algebras can be implemented and shared in this directory,

increasing the scope of TerraHS.

3.2.1 Mapping TerraLib Classes to Haskell

In section 2.4, we showed how to structure pointers in Haskell. This is especially

important in libraries for GIS application that use complex data structures. In this

section, we show how to map TerraLib classes and Haskell data types. For instance,

consider the following TerraLib class.

class TePoint {
public:
TePoint (double x, double y) {…}
double getX () ;
double getY () ;
...

}

The simplest mapping from Haskell to C uses phantom types:

data TePoint = TePoint --- A phantom type
type TePointPtr = Ptr TePoint -- pointer to TePoint class
make_tePoint :: Double → Double → TePointPtr
getX :: TePointPtr → Double
getY :: TePointPtr → Double

The TePoint type is called a phantom type because it does not appear as a value on the

right side. This approach was used in other works (Jones, 1995; Finne, Leijen et al.,

1999; Meijer e Finne, 2000; Chakravarty, 2004). In this work, we prefer nonphantom

types, which are more adequate in Haskell programs:

data TePoint = TePoint (Double,Double) -- non-phantom type
type TePointPtr = Ptr Point -- pointer to TePoint class

 41

Nonphantom types, in a similar way to C++ classes, use constructors to build a

new object. Based on this, we propose a type class for mapping pointers to algebraic

data types and vice versa.

class Pointer a where
 -- | map haskell type to a pointer
 toPointer :: a → (Ptr a)
 -- | map a pointer to a Haskell type
 fromPointer :: (Ptr a) → a

Using the previous example, we have the following instance:

instance Pointer TePoint where
 toPointer TePoint (x, y) = make_tepoint x y
 fromPointer ptr = TePoint((getX ptr),(getY ptr))

The Pointer type class is instanced to other TerraLib data types, like:

instance Pointer TeLine2D where ..
instance Pointer TePolygon where ..
…

The pointer type class is used internally in TerraHS. Consider the following

topologic function mapped from TerraLib:

tedisjoint :: TePointPtr → TePointPtr → Bool

This function uses a pointer from TePoint class. However, in Haskell, it is more

interesting to use full Haskell types than pointers. Thus, we set up the following new

operations that use Haskell types:

disjoint :: TePoint → TePoint → Bool
disjoint p1 p2 = tedisjoint (toPointer p1) (toPointer p2)

The disjoint operation can be used directly in Haskell programs:

pt1 = TePoint (23.4, 45.6)
pt2 = TePoint (5.6, 78.3)
d = disjoint pt1 pt2
⇒ True

Figure 3.3 – Using the disjoint operation.

The above example is just illustrative. Topologic operations will be presented in

the section 3.4.1.

 42

3.2.2 Compiling TerraHS Programs

A Haskell program has a main function. A simple program is shown in Figure 3.4:

main:: IO()
main = do
 print “Hello World !!”

Figure 3.4 – Haskell Hello World Program

The first line has the main function. This is the entry point to the Haskell program,

similar to main() in C programs. In Haskell, main takes nothing and returns an IO

monad. To compile a Haskell program with ghc, you use a command such as:

ghc -o program program.hs

Before we start a TerraHS program, is necessary to import the modules that include the

TerraLib data types, provided by the TerraHS.TerraLib module, Figure 3.5.

import TerraHS.TerraLib
main:: IO()
main = do
 pt1 = (TePoint (2,3)
 print pt1

⇒ TePoint (2,3)

Figure 3.5 – A simple TerraHS program.

After TerraHS is installed, a TerraHS program can be compiled using the following

command:

ghc -fglasgow-exts -ffi -o tehspr tehspr.hs -package TerraHS-0.1

In Haskell, the libraries are divided into packages. For example, the base package

contains the Prelude module. This package is available any extra flags; it will be

automatically loaded the first time they are needed. Other packages can be loaded using

the –package flag, as the TerraHS package. To use a spatial operation, we need to

import the Algebras.Base.Operations module, Figure 3.6. This program is

compiled the same way.

 43

import TerraHS.TerraLib
import Algebras.Base.Operations
main:: IO()
main = do
 let pt1 = TePoint (2,3)
 let pt2 = TePoint (7,3)
 print distance pt1 pt2

⇒ 5

Figure 3.6 – Second TerraHS program.

This program defines two points, and then it prints the distance between them.

The data types and operations from TerraHS are covered in sections: 3.3, 3.4 and 3.5.

3.3 Spatial Data Types

TerraHS provides support to the basic types in Terralib. In its current version, it

supports vector data structures and cell-space. This data types are accessible to Haskell

program by importing the TerraHS.TerraLib module.

3.3.1 Vector Data Structures

Identifiable entities on the geographical space, or geo-objects, such as cities,

highways or states are usually represented by vector data structures, such as point, line

and polygon. These data structures represent an object by one or more pairs of Cartesian

coordinates, as shown in Figure 3.7.

Figure 3.7 - Vector representation - source: Casanova (2005).

TerraLib represents coordinate pairs through the TeCoord2D data type. In

TerraHS, this type is a tuple of real values.

 44

 type TeCoord2D = (Double, Double)

The TeCoord2D type is the basis for all the geometric types in TerraHS, namely:

 data TePoint = TePoint TeCoord2D
 data TeLine2D = TeLine2D [TeCoord2D]
 type TeLinearRing = TeLine2D
 data TePolygon = TePolygon [TeLinearRing]

The TePoint data type represents a point in TerraHS, and is a single instance of a

TeCoord2D. The TeLine2D data type represents a line, composed of one or more

segments and it is a vector of TeCoord2Ds (Vinhas e Ferreira, 2005). The TeLinearRing

data type represents a closed polygonal line. This type is a single instance of a

TeLine2D, where the last coordinate is equal to the first (Vinhas e Ferreira, 2005). The

TePolygon data type represents a polygon in TerraLib, and it is a list of TeLinearRing.

Other data types include:

 data TePointSet = TePointSet [TePoint]
 data TeLineSet = TeLineSet [TeLine2D]
 data TePolygonSet = TePolygonSet [TePolygon]

Figure 3.8 shows examples of vector data types.

pt = TePoint (4.2, 5.7)
ln = TeLine2D [(2,5),(3,4), (5,6)]
pol = TePolygon [(TeLine2D [(TePoint (4.2, 5.7)), …])]
...

Figure 3.8 - Example of the use of the vector data types

3.3.2 Cell-Spaces

TerraLib supports cell spaces. Cell spaces are a generalized raster structure where each

cell stores a more than one attribute value or as a set of polygons that do not intercept

one another. A cell space enables joint storage of the entire set of information needed to

describe a complex spatial phenomenon. This brings benefits to visualization,

algorithms and user interface (Vinhas e Ferreira, 2005). A cell contains a bounding box

and a position given by a pair of integer numbers.

 data TeCell = TeCell TeBox Integer Integer
 data TeBox = TeBox Double Double Double Double

 45

The TeBox data type represents a bounding box and the TeCell data type

represents one cell in the cellular space. The TeCellSet data type represents a cell space.

 data TeCellSet = TeCellSet [TeCell]

Consider the following cell space:

Figure 3.9 - A cell space graphic representation

This cell space in TerraHS is implemented as:

cels = TeCellSet [(TeCell (TeBox 0 0 1 1) 1 1),
 (TeCell (TeBox 0 1 1 2) 2,1),
 (TeCell (TeBox 1 1 2 2) 1,2),
 (TeCell (TeBox 1 0 1 2) 2,2)]

Figure 3.10 – A cell space in TerraHS

Each cell has a unique identification and a unique reference to its position inside

the cell space. It also has a set of attributes. Since these attributes are the same as those

used by the geo-object data type, they will be discussed in the next section.

3.3.3 Geo-Object Data Type

In TerraLib, a geo-object is an individual entity that has geometric and descriptive parts.

Identifier

Identifiers are used to give to each geo-object a unique identity to distingue a geo-object

in TerraLib database. In the TerraLib an identifier is represented by string.

data ObjectId = ObjectId String

 46

Attributes

Attributes are the descriptive part of a geo-object. An attribute has a name (AttrName)

and a value (Value). We support different data types for values.

type AttrName = String
data Value = StValue String| DbValue Double

 |InValue Int | Undefined
data Attribute = Attr (AttrName, Value)

The same geo-object can contain different data types for values. For instance, a

city can contain some attributes as: (“Name”,(StValue “São José dos Campos”

)) , (“Population”,(InValue 580000)) and (“IDH”, DbValue 0.81)).

Geometry

Geometry is the spatial part, which can have different representations. The possible

representations were defined in the section 3.3.1.

data TeGeometry = GPt TePoint | GLn TeLine2D
| GPg TePolygon |GCl TeCell (…)

Figure 3.11 show an example of the use Geometry data type.

geo1 = GPt (TePoint (4.2, 5.7))
geo2 = GLn (TeLine2D [(2,5),(3,4), (5,6)])
...

Figure 3.11 – Example of use geometry data type

Definition

A geo-object in TerraHS is a triple:

 data GeObject = GeoObject (ObjectId,[Atribute], [Geometry])

Figure 3.12 shows an example of the GeObject data type.

attr1 = Attr (“Attr1”, (InValue 1))
attr2 = Attr (“Attr2”, (InValue 2))

geo1 = GPg (Polygon [(Line2d[(4,5),(3,2),…])]
go = GeObject (ObjectId “1”, [attr1,attr2], [geo1])

Figure 3.12 - Example of use GeoObject data type

 47

3.4 Spatial Operations

TerraLib provides a set of spatial operations over geographic data. Vinhas (2005)

groups them in five classes:

• Topological relationships among vector geometries: relationships include

touch, contain, within, covered by.

• Metric operations: area calculation, length or perimeter and geometries

distance.

• Building new geometries: buffer, centroid and convex hull.

• Combining geometries: include difference, union, intersection or symmetrical

difference.

• Map algebra: a set of procedures for handling maps. They allow the user to

model different problems and to get new information from the existing data set.

The core of TerraHS includes the above, except map algebra. We used Haskell

type classes (Shields e Jones, 2001; Chakravarty, 2004) to define the spatial operations

using polymorphism. They are accessible in Haskell by importing the

Algebras.Base.Operations module. In the next sections we present the core

TerraHS spatial functions.

3.4.1 Topologic Operations

Topologic operations can be applied for any combination of types, such as point,

line and polygon. They are grouped in the TopologyOps type class:

class TopologyOps a b where
 disjoint :: a → b → Bool
 intersects :: a → b → Bool
 touches :: a → b → Bool
 …

The TopologyOps class defines a set of generic operations, which can be

instantiated to several combinations of types:

 48

 instance TopologyOps TePolygon TePolygon
 instance TopologyOps TePoint TePolygon
 instance TopologyOps TePoint TeLine2D

Figure 3.13 shows an example of topologic operations.

pol1 = TePolygon[(TeLine2d [(1,1),(1,3),(3,3),(3,1),(1,1)])]
pol2 = TePolygon[(TeLine2d [(2,2),(2,4),(4,4),(4,2),(2,2)])]
test = intersect pol1 pol2
⇒ True

Figure 3.13 - Topologic operations

3.4.2 Centroid Operation

Centroid is the term given to the center of an area, region, or polygon. It is described as

an x,y coordinate.

class Centroid a where
 centroid :: a -> TeCoord2D

In the same way, centroid operation can be instantiated to several geometric types:

instance Centroid TePolygon where
instance Centroid TeLine2D where
instance Centroid TePointSet where
…

Figure 3.14 shows an example of a centroid operation.

pol1 = TePolygon [(TeLine2d [(1,1),(1,3),(3,3),(3,1),(1,1)])]
center = centroid pol1
⇒ TePoint (2,2)

Figure 3.14 - Centroid operation

3.4.3 Overlay Operations

Overlay operations, or set operations, is other important class of operations provided in

TerraHS. These operations were grouped in the Overlay type class:

class Overlay a where
 union :: [a] → [a] → [a]
 intersection :: [a] → [a] → [a]
 difference :: [a] → [a] → [a]

 49

We provide in TerraHS-0.1, the instance of Overlay for the Polygon data

type:

instance Overlay TePolygon where …

Example:

pol1 = TePolygon [(Line2d [(1,1),(1,3),(3,3),(3,1),(1,1)])]
pol2 = TePolygon [(Line2d [(2,2),(2,4),(4,4),(4,2),(2,2)])]
ps = union [pol1] [pol2]
⇒ [(TePolygon [TeLine2D [(1.0,1.0),(1.0,3.0),(2.0,3.0),
(2.0,4.0), (4.0,4.0),(4.0, 2.0),(3.0, 2.0),(3.0, 1.0),
(1.0, 1.0)]]]

Figure 3.15 - Example of overlay operation

3.4.4 Metric operations

TerraHS proves some important metric operations:

• distance : calculate the Euclidian distance between two points.

distance :: TePoint → TePoint → Double

• llength: Returns the length of a Line 2D.

llength :: TeLine2D → Double

• polarea: Calculates the area of a polygon

pol_area :: TePolygon → Double

Examples:

l = (TeLine2D [(1.0,1.0),(1.0,2.0),(1,7)])
len = llength l
⇒ 6

dis = distance (TePoint (2,3)) (TePoint (7,3))
⇒ 5

Figure 3.16 – Example of metric operations

 50

3.5 Spatial Database Access

One of the main features of TerraLib is its use of different object-relational database

management systems (OR-DBMS) to store and retrieve the geometric and descriptive

parts of spatial data (Vinhas e Ferreira, 2005). TerraLib follows a layered model of

architecture, where it plays the role of the middleware between the database and the

final application. Integrating Haskell with TerraLib enables an application developed in

Haskell to share the same data with applications written in C++ that use TerraLib, as

shown in Figure 3.17.

Figure 3.17 - Using the TerraLib to share a geographical database, adapted from Vinhas
e Ferreira (2005).

A TerraLib database access does not depends on a specific DBMS and uses an abstract

class called TeDatabase (Vinhas e Ferreira, 2005), as shown in Figure 3.18:

Figure 3.18 - TerraLib database drivers - source: Vinhas and Ferreira (2005)

In TerraHS, the database classes are algebraic data types, where each constructor

represents a subclass.

 51

data TeDatabase = TeMySQL String String String String
 | TePostgreSQL String String String String

A TerraLib layer aggregates spatial information located over a geographical

region and that share the same attributes. A layer is identifier in a TerraLib database by

its name (Vinhas e Ferreira, 2005).

 type TeLayerName = String

The Algebras.Base.GeoDatabases module provides the GeoDatabases type class.

This type class provides generic functions for storage, retrieval of geo-objects from a

spatial database.

class GeoDatabases a where
 open :: a → IO (Ptr a)
 close :: (Ptr a) → IO ()
 retrieve :: (Ptr a) → TeLayerName → IO [GeObject]
 store ::(Ptr a) → TeLayerName → [GeObject] → IO Bool
 errorMessage :: (Ptr a) → IO String

These operations will then be instantiated to a specific database, such as mySQL.

 instance GeoDatabases TeDatabase where …

Figure - 3.19 shows an example of a TerraLib database access program.

import Algebras.Base.GeoDatabases -- database operations
import TerraHS.TerraLib -- TeMySQL type

host = “sputnik”
user = “Sergio”
password = “terrahs”
dbname = “Amazonia”
main:: IO()
main = do
 -- accessing TerraLib database

 db <- open (TeMySQL host user password dbname)
 -- retrieving a geo-object set

geos <- retrieve db “cells”
 geos2 <- op geos – op is a manipulation operation
 -- storing a geo-object set

store db “newlayer” geos2
close db

Figure - 3.19 - Acessing a TerraLib database using TerraHS

 52

In this chapter we have presented TerraHS, a software developed in Haskell language

for GIS application developing. Its main contribution is to provided basic spatial

operations and structures for prototyping novel ideas in GisScience. As a validation, we

will present in the next chapter the map algebra proposed in Câmara (2005).

 53

CHAPTER 4

A GENERALIZED MAP ALGEBRA IN TERRAHS

4.1 Introduction

One of the important uses of functional language for GIS is to enable fast and sound

development of new applications. As an example, this section presents a map algebra in

a functional language. In GIS, maps are continuous variables or categorical

classifications of space (for example, soil maps). Map Algebra is a set of procedures for

handling maps. They allow the user to model different problems and to get new

information from the existing data set. For this example, we use the map algebra

proposed in Câmara et al. (2005). The authors describe the design of a map algebra that

generalizes Tomlin’s map algebra by incorporating topological and directional spatial

predicates. In the next section, we describe the algebra and implement it. We have

included the discussion from Câmara et al. (2005) in sections 4.2 and 4.3 as a support

for the reader.

4.2 Tomlin’s Map Algebra: a brief review

The main contribution to map algebra comes from the work of Tomlin (1983). Tomlin’s

model uses a single data type (a map), and defines three types of functions. A map is

composed by zones, where a zone can contain one or more locations. Tomlin defines

three types of higher-order functions for maps. These functions apply a first-order

function to all elements of map, according to different spatial restrictions:

• Local functions. The value of a location in the output map is computed from the

values of the same location in one or more input maps. They include logical

expressions such as “classify as high risk all areas without vegetation with slope

greater than 15%” (Figure 4.1 - a)

• Focal functions. The value of a location in the output map is computed from the

values of the neighborhood of the same location in the input map. They include

 54

expressions such as “calculate the local mean of the map values” (Figure 4.1.b).

Focal functions use the condition of adjacency, which matches the spatial predicate

touch.

• Zonal functions: The value of a location in the output map is computed from the

values of a spatial neighborhood of the same location in an input map. This

neighborhood is a restriction on a second input map. They include expressions such

as “given a map of cities and a digital terrain model, calculate the mean altitude for

each city” (Figure 4.1.c). Zonal functions use the condition of topological

containment, which matches the spatial predicate inside.

a. Local operation b. Focal operation c. Zonal operation

Figure 4.1. Tomlin’s operations for map algebra (source: Tomlin (1983))

There are two classes of functions in map algebra. First order functions take values as

arguments. Higher order functions are functions that have other functions as arguments.

Higher order functions are the basis for map algebra operations (Frank, 1997). An

example of a higher order function is “classify as high risk all areas without vegetation

with slope greater than 15%”. In this case, the first-order function is a selection

procedure (test if slope > 15%) and the higher-order function is the classification

function, which applies the selection function to all regions of the map.

 Examples of first-order functions include:

 55

• Single argument mathematical functions: log, exp, sin, cosine, tan,

arcsin, arccosine, arctan, sinh, cosineh, tanh, arcsinh,

arccosineh, arctanh, sqrt, power, mod, ceiling, floor.

• Single argument logical function: not.

• Multiargument functions: sum, product, and, or, maximum, minimum,

mean, median, variety, majority, minority, ranking, count.

4.3 Research challenges for map algebra

Tomlin’s map algebra has become as a standard way of processing coverages,

especially for multicriteria analysis. In recent years, several extensions to map algebra

have been proposed. These include the GeoAlgebra of Takeyama and Couclelis (1997),

an extension of map algebra that allows for flexible definitions of neighborhoods. Pullar

(2001) developed MapScript, a language that allows control structures and dynamical

models to be incorporated into map algebra. Ostlander (2004) suggests how map

algebra could be embedded in a web service. Mennis et al. (2005) propose an extension

of map algebra for spatio-temporal data handling. Frank (2005) discusses how map

algebra can be formalized in a functional programming context and how this approach

provides support both for spatial and spatio-temporal operations. Nevertheless, all

extensions share the ad hoc nature of Tomlin’s original proposal. They accept the

foundations of Tomlin’s algebra as a basis for their work.

 Therefore, one of the open challenges in spatial information science is to

develop a theoretical foundation for map algebra. We need to find out if Tomlin’s map

algebra can be part of a more general set of operations on coverages. We state these

questions as: “What is the theoretical foundation for map algebra?” “Could this

theoretical foundation provide support for a more generic map algebra?”

 The proposal by Câmara et al. (2005) is a map algebra that generalizes Tomlin’s

map algebra by incorporating spatial predicates. The idea is further developed in the

next sections and then applied in a functional programming context.

 56

4.4 Spatial predicates as a basis for Map Algebra

As we show in the previous section, spatial operations in Tomlin’s map algebra use only

two topological predicates (‘touch’ and ‘inside’). It is natural to extend map algebra to

use a more general set of spatial predicates. We take the standard set of topological

predicates {‘disjoint’, ‘equal’, ‘touch’, ‘inside’, ‘overlap’, ‘contains’, ‘intersects’},

which cover all vector area-area relations, as proposed by by Egenhofer and Herring

(1991) and adopted by the Open Geospatial consortium (Ogc, 1996). The 9-intersection

model also distinguishes 33 relations between simple lines, 19 between simple lines and

simple regions, 2 between points and 3 between points and regions or lines. The works

of Winter (1995) and Winter and Frank (2000) extend this definition to the application

to raster representations.

The proposal by Câmara et al. (2005) is to develop a map algebra that uses the

Open GIS topological spatial predicates. This extended algebra conveys all Tomlin’s

algebra operations and enables operations that are not directly expressible by his

proposal. In what follows, we show how this extended map algebra can be expressed

succinctly and elegantly in Haskell.

4.5 The Open GIS Coverage in Haskell

Our map algebra is based on the coverage defined by the Open GIS consortium (Ogc,

2000). A coverage in a planar-enforced spatial representation that covers a geographical

area and divides it in spatial partitions that may be either regular or irregular. A

coverage is a function cov:: E→ A, where:

• The domain is finite collection, where each element is located in space.

• The range is a set of attribute values.

For each geographic element e ∈ E, a coverage function returns a value cov (e) = a,

where a ∈ A. A geographical element can represent a location, area, line or point. For

retrieving data from a coverage, the Open GIS specification propose describes a discrete

function (DiscreteC_Function), as shown in Figure 4. below.

 57

 Figure 4.2 - The Open GIS discrete coverage function – source: (Ogc, 2000).

The DiscreteCFunction data type describes a function whose spatial domain and whose

range are finite. The domain consists of a finite collection of geometries, where a

DiscreteCFunction maps each geometry for a value (Ogc, 2000). Based on the Open

GIS specification, we define the type class Coverages in Haskell.

class Coverages cov where
 evaluate :: (Eq a, Eq b) => cov a b → a → Maybe b
 domain :: cov a b → [a]
 num :: cov a b → Int
 values :: cov a b → [b]
 new_cov :: [a] → (a → b) → (cov a b)
 fun :: (cov a b) → (a → b)

The type class Coverages generalizes and extends the DiscreteCFunction class. Its

functions are parameterized on the input type a and the output type b. It provides the

support for the operations proposed by the DiscreteCFunction:

• evaluate is a function that takes a coverage and an input value a and

produces an output value (“give me the value of the coverage at location a”).

• domain is a function that takes a coverage and returns the values of its

domain.

• num returns the number of elements of the coverage’s domain.

• values returns the values of the coverage’s range.

We propose two extra functions: new_cov and fun, as described below.

 58

• new_cov, a function that returns a new coverage, given a domain and a

coverage function.

• fun: given a coverage , returns its coverage function.

We define the Coverage data type to use the functions of the generic type class

Coverages. The Coverage data type is also parameterized.

data Coverage a b = Coverage ((a → b), [a])

The data type Coverage has two components:

• A coverage function that maps an object of generic type a to generic type b.

• A domain of objects of the polymorphic type a.

The instance of the type class Coverages to the Coverage data type is shown below:

 instance Coverages Coverage where
 new_cov a f = (Coverage (f, a))

 evaluate f o
 | (elem o (domain f)) = Just ((fun f) o)
 | otherwise = Nothing

 domain (Coverage (f, a)) = a
 num f = length (domain f)
 values f = map (fun f) (domain f)
 fun (Coverage (f,_)) = f

Figure 4. show an example of the Coverage data type.

c1 :: Coverage String Int
c1 = new_cov [”ab”,”abc”,”a”] length
values c1
⇒ [2,3,1]
evaluate c1 “ab”
⇒ Just 2
evaluate c1 “ad” -- c1 does not contain “ad”
⇒ Nothing

Figure 4.3 - Example of use of the Coverage data type.

 59

4.6 Map Algebra Operations

There are two classes of map algebra operations: nonspatial and spatial. For nonspatial

operations, the value of a location in the output map is obtained from the values of the

same location in one or more input maps. They include logical expressions such as

“classify as high risk all areas without vegetation with slope greater than 15%”,

“Select areas higher than 500 meters”, “Find the average of deforestation in the last

two years”, and “Select areas higher than 500 meters with temperatures lower than 10

degrees”. Spatial functions are those where the value of a location in the output map is

computed from the values of the neighborhood of the same location in the input map.

They include expressions such as “calculate the local mean of the map values” and

“given a map of cities and a digital terrain model, calculate the mean altitude for each

city”.

Nonspatial operations are higher-order functions that take one value for each

input map and produce one value in the output map, using a first-order function as

argument. These include single argument functions and multiple argument functions

(Câmara, Palomo et al., 2005). Spatial operations are higher-order functions that use a

spatial predicate (some examples of spatial predicates are shown in Figure 4.4). These

functions combine a selection function and a multivalued function, with two input maps

(the reference map and the value map) and an output map (Câmara, Palomo et al.,

2005).

Figure 4.4 Examples of spatial predicates

 60

Spatial functions generalize Tomlin’s focal and zonal operations and have two

parts: selection and composition. For each location in the output map, the selection

function finds the matching region on the reference map. Then it applies the spatial

predicate between the reference map and the value map and creates a set of values. The

composition function uses the selected values to produce the result (Figure 4.1). Take

the expression “given a map of cities and a digital terrain model, calculate the mean

altitude for each city”. In this expression, the value map is the digital terrain model and

the reference map is the map of cities. The evaluation has two parts. First, it selects the

terrain values inside each city. Then, it calculates the average of these values.

Figure 4.1-Spatial operations (selection + composition).Adapted from (Tomlin, 1990)

4.7 Map Algebra Operations in TerraHS

In TerraHS, we use a generic type class for map algebra operations, as follows:

class (Coverages cov) => CoverageOps cov where
single :: (b → c) → (cov a b) → (cov a c)
multiple :: ([b]→c) → [(cov a b)] → (cov a b)→(cov a c)

 select :: (cov a b) → (a → c → Bool) → c → (cov a b)
compose :: ([b] → b) → (cov a b) → b

 spatial :: ([b] → b) → (cov a b) → (a → c → Bool)
 → (cov c b) → (cov c b)

The implicit assumption of these is that the geographical area of the output map is the

same as reference map.

 61

 The instantiation of the coverage operations is provided by:

 instance CoverageOps Coverage where
 -- non-spatial operation on a single coverages
 single g c1 = new_cov (domain c1) (g . (fun c1))

-- non-spatial operation on multiple coverages
 multiple fn clist c1 = new_cov (domain c1)
 (\x -> fn (faux clist x))

-- spatial selection
 select cov pr o = new_cov sel_dom (fun cov)
 where sel_dom = [l | l <- (domain cov) , (pr l o)]

-- spatial composition
 compose f cov = (f (values cov))
 -- spatial operation : selection + composition
 spatial fn c1 predic cref = new_cov (domain cref)
 (\x -> compose fn (select c1 predic x))

The single function has two arguments: a coverage and a first-order function f. It

returns a new coverage, whose domain is the same as the input coverage. The coverage

function of the output map is the composition of the coverage function of the input map

and the first-order function g. Figure 4. shows an example of a single argument

function.

 single g c1 = new_cov (domain c1) (g . (fun c1))

values c1
⇒ [2, 4, 12]
c2 = single square c1
values c2
⇒ [4, 16, 144]

Figure 4.6 - Example of use of the single argument function

The multiple function has three arguments: a multivalued function, a coverage list,

and a reference coverage. It applies a multivalued function to the coverage list. The

result has thea same domain as the reference coverage. The new coverage function is

defined using an auxiliary function that scans the input list:

 multiple fn clist c1 = new_cov (domain c1)
 (\x -> fn (faux clist x))

 62

For each location x of the reference coverage, the auxiliary function faux applies the

multiargument function in the input list of maps. The result is the output value for

location x. The function faux also handles cases where there are multiargument function

fails to returns an output value.

faux :: (Eq a, Eq b, Coverages cov) => [(cov a b)] -> a -> [b]
faux [] _ = []
faux (m:ms) e = faux1 (evaluate m e)
 where
 faux1 (Just v) = v : (faux ms e)

faux1 (Nothing) = (faux ms e)

Figure 4. shows an example of multiple.

values c1
 [2, 4, 8]
values c2
⇒ [4, 5, 10]
c3 = multiple sum [c1, c2] c1
values c3
⇒ [6, 9, 18]

Figure 4.7 - Example of use of multiple

The spatial selection has three arguments: an input coverage, a predicate and a

reference element. It selects all elements that satisfy a predicate on a reference object

(“select all deforested areas inside the state of Amazonas”).

 select c prd o = new_map sel_dom (fun c)
where

 sel_dom = [loc | loc ← (domain m) , (prd loc o)]

This function takes a reference element and an input coverage. It creates a

coverage that contains all elements of the input that satisfy the predicate over the

reference element. Figure 4. shows an example.

line= TeLine2D [(1,2),(2,2),(1,3),(0,4)]
domain c1
⇒ [TePoint(4,5),TePoint (1,2),TePoint (2,3),TePoint (1,3)]
c2 = select c1 intersects line
domain c2
⇒ [TePoint (1,2), TePoint (1,3)]

Figure 4.8 - Example of select.

 63

The composition function combines selected values using a multivalued

function. In Figure 4., the compose function is applied to coverage c1 and to the

multivalued function sum.

 compose f m = (f (values m))

values c1
⇒ [2, 6, 8]
compose sum c1
⇒ 16

Figure 4.9 - Example of compose.

The spatial function combines spatial selection and composition. The output

coverage has the same domain as the reference coverage. For each location in the output

coverage, the selection function produces a set of values that satisfy a spatial predicate..

The composition function uses the selected values to produce the result. Figure 4.10

shows an example.

 spatial fn c prd cref = new_cov (domain cref)
 (\x → compose fn (select c prd x))

domain c1
= [TePoint(4,5),TePoint (1,2),TePoint (2,3),TePoint (1,3)]
values c1
= [2,4,5,10]
domain c2
= [(TeLine2D[(1,2),(2,2),(1,3),(0,4)])]
c3 = spatial sum c1 intersects c2
values m3 -- 4 + 10
= [14]

Figure 4.10 - Example of spatial

The spatial operation selects all points of c1 that intersect c2 (which is a single line).

Then, it sums its values. In this case, points (1,2) and (1,3) intersect the line. The sum of

their values is 14.

 64

4.8 Application Examples

In the previous section we described how to express the map algebra proposed in

Câmara et al. (2005) in TerraHS. In this section we show the application of this algebra

to actual geographical data.

4.8.1 Storage and Retrieval

Since a Coverage is generic data type, it can be applied to different concrete types. In

this section we apply it to the Geometry and Value data types available in the TerraHS,

which represent, respectively, a region and a descriptive value. TerraHS enables

storage and retrieval of a geo-object set. To perform a map algebra, we need to convert

from a geo-object set to a map and vice versa.

toCoverage:: [GeObject]→ AttrName→ (Coverage Geometry Value)
toGeObject:: (Coverage Geometry Value)→ AttrName→ [GeObject]

Given a geo-object set and the name of one its attributes, the toCoverage

function returns a coverage. Remember that a coverage type has one value for each

region. Thus, a layer with three attributes it produce three coverages. The toGeObject

function inverts the toCoverage function. Details of these two functions are outside

the scope of this work. Given these functions, we can store and retrieve a coverage,

given a spatial database.

retrieveCov::
 TeDatabase→ LayerAttr→ IO (Coverage Geometry Value)

retrieveCov db (layername, attrname) = do
 db <- open db
 geoset <- retrieve db layername
 let map = toCoverage geoset attrname
 close db
 return map

The LayerAttr type is a tuple that represents the layer name and attribute

name. The retrieveCov function connects to the database, loads a geo-object set,

converts these geo-objects into a coverage, and return it as its output.

 65

storeCov:: TeDatabase→ LayerAttr
→ (Coverage Geometry Value) → IO Bool

 storeCov db (layername, attrname) c = do
 let geos = toGeObject c attrname
 db <- open db
 close db
 let status = store db layername geos
 return status

The storeCov function converts a coverage to a geo-object set that will be

saved in the database. We can now write a program that reads and writes a coverage in a

TerraLib database.

host = “sputnik”
user = “Sergio”
password = “terrahs”
dbname = “Amazonia”
main:: IO ()
main = do
 let db = (TeMySQL host user pass dbname)

cov <- retrieveCov db (“amazonia”,“deforest")
-- apply a nonspatial operation

 let defclass = single classify cov
 storeCov db (“amazonia”, “defclass”) defclass

Figure 4.11 - Retrieving and storing a coverage in a TerraLib database

4.8.2 Examples of Map Algebra in TerraHS

Since 1989, the Brazilian National Institute for Space Research has been monitoring the

deforestation of the Brazilian Amazon, using remote sensing images. We use some of

this data as a basis for our examples. We selected, from (Aguiar, 2006), a data set from

the central area of Pará, composed by a group of highways and two protection areas.

This area is divided in cells of 25 x 25 km2, where each cell describes the percentage of

deforestation and deforested area (Figure 4.2).

 66

Figure 4.2 – Deforestation, Protection Areas and Roads Maps (Pará State)

Our first example considers the expression: “Given a coverage of deforestation and

classification function, return the classified map”. The classification function defines

four classes: (1) dense forest; (2) mixed forest with agriculture; (3) agriculture with

forest fragments; (4) agricultural area. This function is:

classify :: Value → Value
classify (DbValue v)
 | v < 0.2 = (StValue "1")
 | ((v > 0.2) && (v < 0.5)) = (StValue "2")
 | (v > 0.5) && (v < 0.8) = (StValue "3")
 | v > 0.8 = (StValue "4")

We obtain the classified coverage using the single operation together with the

classify function:

 def_class = single classify def_cov

 67

Figure 4.3 – The classified coverage

As a second example, we take the expression: “Calculate the mean deforestation for

each protection area”. The inputs are: the deforestation coverage (def_cov), a spatial

predicate (within), a multivalued function (mean) and the map of protected areas

(prot_areas). The output is a deforestation coverage of the protected areas

(def_prot) with the same objects as the reference coverage (prot_areas). We use

the spatial higher-order operation to produce the output:

def_prot = spatial mean def_cov within prot_areas

 68

Figure 4.4 – Deforestation mean by protection area

In our third example, we consider the expression: “Given a coverage containing roads

and a deforestation coverage, calculate the mean of the deforestation along the roads”.

We have as inputs: the deforestation coverage (def_cov), a spatial predicate

(intersect), a multivalued function (mean) and a road map (roads). The product is a

coverage with one value for each road. This value is the mean of the cells that intercept

this road.

road_def = spatial mean def_cov intersect roads

 69

Figure 4.5 – Deforestation mean along the roads

4.9 Discussion of the Results

The implementation of a map algebra in TerraHS shows the benefits of using functional

programming for GIS application development. The resulting map algebra is compact,

generic and extensible. It is also useful to compare this implementation with a similar

product in an imperative language. Table 4.1 presents the total number of Haskell lines

used to develop the map algebra.

 70

Table 4.1 – Map Algebra in Haskell

Number of source lines

operations axioms total

Data types 6 9 15

Map Algebra 6 10 16

Auxiliary 1 5 6

Total 13 24 37

For comparison purposes, the SPRING GIS (Câmara, Souza et al., 1996) includes a

map algebra in the C++ language that uses about 8,000 lines of code. The SPRING map

algebra provides a strict implementation of Tomlin’s algebra. Our map algebra allows a

more generic set of functions than Tomlin’s at less than 1% of the code lines. This large

difference comes from the use of the parameterized types, overloading and higher order

functions, which are features of the Haskell language. Our work points out that

integrating functional languages with spatial database is an efficient alternative in for

developing and prototyping novel ideas in GIScience. The example shows the benefits

on using functional programming, since it enables a fast prototyping and testing cycle.

 71

CHAPTER 5

CONCLUSION AND FUTURE WORKS

The hypothesis of our work was: to integrate functional programming and spatial

databases for GIS application development, we should build a functional GIS on top of

an existing spatial database support. We then use each programming paradigm in the

most efficient fashion. To assess our hypothesis, we have built TerraHS, an application

development system that enables developing geographical applications in the Haskell

functional language. TerraHS uses the data handling facilities of the C++ GIS library

TerraLib. We then applied TerraHS to the concrete case of developing a map algebra.

We have shown that the resulting product is more expressive, more modular, and was

developed faster than its equivalent in C++.

Combining TerraHS and TerraLib enables the use of functional programming to real-

life problems, and is a contribution to make Haskell a more widely used tool for GIS

application development. We use each programming style in the most efficient fashion.

We rely on imperative languages such as C++ to provide spatial database support and

we use functional programming for building parts that provide data manipulation

algorithms.

We now consider some future works:

• Database Access: The current version of TerraHS has a core of database access

operations. It can write a new record but not change an existing one. Future

versions of TerraHS will include operations such as update.

• Spatiotemporal algebras: TerraHS is a good environment for development

spatiotemporal algebras. For example, Güting (2005) defines an algebra for

moving objects. His spatio-temporal data types for moving objects are

embedded in a query language to answer queries as: “Given the trajectories of

two airplanes, when they will pass over the same location?”. Similarly, Medak

 72

(2001) proposes an algebra for modeling change in socio-economical units.

Medak’s algebra provides answers to queries such as: “When was this parcel

divided?” By using TerraHS, we can envisage developing a set of data types and

operators for handling all types of spatiotemporal data.

• Integration into GUI software: To improve the impact of applications

developed in TerraHS, we need to integrate it into a user-friendly environment.

This integration needs to provide an external shell that hides the more hard to

learn parts of Haskell.

We now summarize our main findings and contributions. The Haskell language

provides efficient support for using functional programming for real applications.

Haskell enforces a programming style that is both rigorous and expressive. Most GIS

applications contain a core part that can be expressed by algebraic data types and

thus can be nicely developed in Haskell. Applications such as TerraHS provide the

missing link between spatial and spatiotemporal algebras and spatial databases. Our

work has thus validated our initial hypothesis and provided a software component

that can be useful in practice. We hope that TerraHS will be useful for developing

complex and sound GIS applications using an innovative programming style.

 73

REFERENCES

AGUIAR, A. P. D. D. Modeling Land Use Change in the Brazilian Aamazon:
Exploring Intra-Regional Heterogeneity. (Doctor Thesis). Instituto Nacional de
Pesquisas Espaciais (INPE), São José dos Campos, 2006.

BACKUS, J. Can Programming Be Liberated from the Von Neumann Style? A
Functional Style and Its Algebra of Programs. Communications of the ACM, v.21,
n.8, p.613-641. 1978.

CÂMARA, G. Representação Computacional De Dados Geográficos. In: M. Casanova,
G. Câmara, et al (Ed.). Bancos De Dados Geográficos. Curitiba: MundoGeo Editora,
2005. Representação Computacional De Dados Geográficos, p.11-52

CÂMARA, G., et al. Towards a Generalized Map Algebra: Principles and Data Types.
In: VII Workshop Brasileiro de Geoinformática. Campos do Jordão: SBC, 2005. p.

CÂMARA, G., et al. Spring: Integrating Remote Sensing and Gis with Object-Oriented
Data Modelling. Computers and Graphics, v.15, n.6, p.13-22. 1996.

CASANOVA, M., et al., Eds. Bancos De Dados Geograficos (Spatial Databases).
Curitiba: Editora MundoGEOed. 2005.

CHAKRAVARTY, A. P. A. M. Interfacing Haskell with Object-Oriented
Language. In: 15th International Workshop on the Implementation of Functional
Languages. Lübeck, Germany: Springer-Verlag, 2004. p.

CHAKRAVARTY, M. The Haskell 98 Foreign Function Interface 1.0: An Addendum
to the Haskell 98 Report. 2003.

CHAKRAVARTY, M. M. T. C->Haskell, an Interface Generator for Haskell. 2005.

DAUME, H. Yet Another Haskell Tutorial 2004.

EGENHOFER, M. e HERRING, J. Categorizing Binary Topological Relationships
between Regions, Lines, and Points in Geographic Databases. Orono, ME:
Department of Surveying Engineering, University of Maine. 1991

ERWIG, M., et al. Spatio-Temporal Data Types: An Approach to Modeling and
Querying Moving Objects in Databases. GeoInformatica, v.3, n.3, p.269-296. 1999.

FINNE, S., et al. Calling Hell from Heaven and Heaven from Hell. Proceedings of the
fourth ACM SIGPLAN international conference on Functional programming. Paris,
France: ACM Pressersity Press: 114-125 p. 1999.

 74

FRANK, A. Higher Order Functions Necessary for Spatial Theory Development. In:
Auto-Carto 13. Seattle, WA: ACSM/ASPRS, 1997. 11-22 p.

FRANK, A. One Step up the Abstraction Ladder: Combining Algebras - from
Functional Pieces to a Whole. In: COSIT - Conference on Spatial Information
Theory: Springer-Verlag, 1999. 95-108 p.

FRANK, A. Map Algebra Extended with Functors for Temporal Data. In: Conceptual
Modeling: ER 2005 Workshops. Klagenfurt, Austria,: Springer, 2005. p.

FRANK, A. e KUHN, W. Specifying Open Gis with Functional Languages. In: M.
Egenhofer e J. Herring (Ed.). Advances in Spatial Databases—4th International
Symposium, Ssd ‘95, Portland, Me. Berlin: Springer-Verlag, v.951, 1995. Specifying
Open Gis with Functional Languages, p.184-195. (Lecture Notes in Computer Science)

FRANK, A. e MEDAK, D. Executable Axiomatic Specification Using Functional
Language - Case Study: Ontology for a Spatio-Temporal Database. 1997.

GÜTING, R., et al. Implementation of the Rose Algebra: Efficient Algorithms for
Realm-Based Spatial Data Types. In: M. Egenhofer e J. Herring (Ed.). Advances in
Spatial Databases—4th International Symposium, Ssd ‘95, Portland, Me. Berlin:
Springer-Verlag, v.951, 1995. Implementation of the Rose Algebra: Efficient
Algorithms for Realm-Based Spatial Data Types, p.216-239. (Lecture Notes in
Computer Science)

GÜTING, R. H., et al. Spatio-Temporal Models and Languages: An Approach Based on
Data Types. In: M. Koubarakis (Ed.). Spatio-Temporal Databases. Berlin: Springer,
2003. Spatio-Temporal Models and Languages: An Approach Based on Data Types

GÜTING, R. H. e SCHNEIDER, M. Moving Objects Databases: Morgan Kaufmann
Publishers. 2005

GUTTAG, J. e HORNING, J. The Algebraic Specification of Abstract Data Types.
Acta Informatica, v.10, p.27-52. 1978.

HUDAK, P. Conception, Evolution, and Application of Functional Programming
Languages. ACM Comput. Surv., v.21, n.3, p.359-411. 1989.

HUDAK, P., et al. A Gentle Introduction to Haskell 98 1999.

HUDAK, P., et al. The History of Haskell (Draft) 2007.

HUGHES, J. Why Functional Programming Matters. Computer Journal, v.32, n.2,
p.98--107. 1989.

JONES, M. P. Functional Programming with Overloading and Higher-Order
Polymorphism. Advanced Functional Programming, First International Spring School

 75

on Advanced Functional Programming Techniques-Tutorial Text %@ 3-540-59451-5:
Springer-Verlag: 97-136 p. 1995.

JONES, S. L. P. e WADLER, P. Imperative Functional Programming. In: Proceedings
of the 20th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. Charleston, South Carolina, United States: ACM Press, 1993. 71-84 p.

LIN, F.-T. Many Sorted Algebraic Data Models for Gis. International Journal of
Geographical Information Science, v.12, n.8, p.765-788. 1998.

MCCARTHY, J. A Basis for a Mathematical Theory of Computation. In: Computer
Programming and Formal Systems: North-Holland, Amsterdam, 1963. 33--70 p.

MEDAK, D. Lifestyles - a New Paradigm in Spatio-Temporal Databases.
Department for Geoinformation, Technical University of Vienna, Vienna, 1999.

MEDAK, D. Lifestyles. In: A. U. Frank, Raper, J., & Cheylan, J.-P. (Ed.). Life and
Motion of Socio-Economic Units. Esf Series. London: Taylor & Francis, 2001.
Lifestyles

MEIJER, E. e FINNE, S. Lambada, Haskell as a Better Java. In: Proc. Haskell
Workshop 2000, 2000. p.

MENNIS, J., et al. Cubic Map Algebra Functions for Spatio-Temporal Analysis.
Cartography and Geographic Information Science, v.32, n.1, p.17-32. 2005.

MEYER, B. On to Components. Computer v.32, n.1, p.139-140. 1999.

MOGGI, E. Notions of Computation and Monads. Inf. Comput., v.93, n.1, p.55-92.
1991.

OGC, Ed. The Opengis® Guide - Introduction to Interoperable Geoprocessing and the
Opengis Specification. Boston: Open GIS Consortium, Inced. 1996.

OGC. Open Gis Consortium. Topic 6: The Coverage Type and Its Subtypes. 2006 2000.

OSTLÄNDER, N. Interoperable Services for Web-Based Spatial Decision Support. In:
7th AGILE Conference on Geographic Information Science. Heraklion, Greece:
AGILE, 2004. p.

PEYTON JONES, S. Tackling the Awkward Squad: Monadic Input/Output,
Concurrency, Exceptions, and Foreign-Language Calls in Haskell. In: Engineering
theories of software construction: IOS Press, 2001. 47-96 p.

PEYTON JONES, S. Haskell 98 Language and Libraries the Revised Report 2002.

PEYTON JONES, S., et al. Haskell 98: A Non-Strict, Purely Functional Language
1999.

 76

PEYTON JONES, S., et al. Scripting Com Components in Haskell. In: Proceedings of
the 5th International Conference on Software Reuse IEEE Computer Society, 1998.
224 p.

PIERCE, B. Types and Programming Languages. Cambridge, MA: MIT Press. 2002

PULLAR, D. Mapscript: A Map Algebra Programming Language Incorporating
Neighborhood Analysis. GeoInformatica, v.5, n.2, p.145-163. 2001.

SHIELDS, M. e JONES, S. L. P. Object-Oriented Style Overloading for Haskell.
Electronic Notes in Theoretical Computer Science, v.59, n.1. 2001.

TAKEYAMA, M. e COUCLELIS, H. Map Dynamics: Integrating Cellular Automata
and Gis through Geo-Algebra. International Journal of Geographical Information
Systems, v.11, n.1, p.73-91. 1997.

THOMPSON, S. Haskell:The Craft of Functional Programming. Harlow, England:
Pearson Education. 1999

TOMLIN, C. D. A Map Algebra. In: (Ed.). Harvard Computer Graphics Conference.
Cambridge, MA, 1983. A Map Algebra

TOMLIN, C. D. Geographic Information Systems and Cartographic Modeling.
Englewood Cliffs, NJ: Prentice-Hall. 1990

VINHAS, L. e FERREIRA, K. R. Descrição Da Terralib. In: M. Casanova, G. Câmara,
et al (Ed.). Bancos De Dados Geográficos. Curitiba: MundoGeo Editora, 2005.
Descrição Da Terralib, p.397-439

WADLER, P. Comprehending Monads. In: Proceedings of the 1990 ACM conference
on LISP and functional programming Nice, France: ACM Press, 1990. 61-78 p.

WINTER, S. Topological Relations between Discrete Regions. In: M. Egenhofer e J.
Herring (Ed.). Advances in Spatial Databases—4th International Symposium, Ssd
‘95, Portland, Me. Berlin: Springer-Verlag, v.951, 1995. Topological Relations
between Discrete Regions, p.310-327. (Lecture Notes in Computer Science)

WINTER, S. e FRANK, A. Topology in Raster and Vector Representation.
GeoInformatica, v.4, n.1, p.35-65. 2000.

WINTER, S. e NITTEL, S. Formal Information Modelling for Standardisation in the
Spatial Domain. International Journal of Geographical Information Science, v.17,
p.721--741. 2003.

YAKELEY, A. Haskell: Libraries and Tools. 2006 2006.

