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RESUMO 

A pesquisa recente em geoinformação indica que há benefícios no uso de programação 

funcional aplicada ao desenvolvimento de aplicativos geográficos. No entanto, o 

desenvolvimento completo de um sistema de geoinformação em linguagem funcional 

não é factível. O acesso a banco de dados geográfico exige um grande conjunto de 

operações de entrada e saída, de difícil implementação em linguagens funcionais. Essa 

dissertação apresenta um aplicativo que integra uma linguagem funcional (Haskell) com 

banco de dados espacial (TerraLib). Esta integração  permite o desenvolvimento, em 

uma linguagem funcional, de aplicativos geográficos que manipulem dados em um 

banco de dados espacial. Esse aplicativo foi usado no desenvolvimento de uma Álgebra 

de Mapas, que mostra os benefícios do uso desse paradigma em geoinformação. Nosso 

trabalho mostrou que existem muitas vantagens no uso de uma linguagem funcional, 

especialmente Haskell, no desenvolvimento de aplicativos geográficos mais expressivos 

e concisos. Combinando Haskell e TerraLib, nós permitimos o uso de programação 

funcional em problemas reais, e tornamos o Haskell uma ferramenta ainda mais 

amplamente usada no desenvolvimento de aplicativos geográficos. 
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ABSTRACT 

Recently, researchers in GIScience argued about the benefits on using functional 

programming for geospatial application development and prototyping of novel ideas. 

However, developing an entire GIS in a functional language is not feasible. Support for 

spatial databases requires a large set of I/O operations, which are cumbersome to 

implement in functional languages. This thesis presents an application that interfaces a 

functional language with a spatial database. It enables developing GIS applications 

development in a functional language, while handling data in a spatial database. We 

used this application to develop a Map Algebra, which shows the benefits on using this 

paradigm in GIScience. Our work shows there are many gains in using a functional 

language, especially Haskell, to write concise and expressive GIS applications. 

Combining Haskell and TerraLib enables the use of functional programming to real-

life GIS problems, and is a contribution to make Haskell a more widely used tool for 

GIS application development. 
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CHAPTER 1 

INTRODUCTION 

Developing geographic information systems is a complex enterprise. GIS applications 

involve data handling, algorithms, spatial data modeling, spatial ontologies and user 

interfaces. Each of these presents unique challenges for GIS application development. 

Broadly speaking, there are three main parts on a GIS application. Spatial databases 

provide for storage and retrieval of spatial data. User interfaces include the well-

established WIMP methaphor (windows, icons, mouse and pointers), as well as novel 

techniques such as direct manipulation and virtual reality. Between the interface and the 

database, we find many spatial algorithms and spatial data manipulation. These include 

techniques such as map algebra, spatial statistics, location-based services and dynamical 

modeling.  

The diversity of data manipulation techniques, as well as the various ways of 

combining them, is an intimidating problem for GIS developer. Therefore, to build 

successful GIS application we must resort to the well-known “divide and conquer” 

principle. It is best to break a complex system into modular parts and design each part 

separately. If these parts are built in a proper way, they can be combined in different 

ways to build efficient and successful GIS applications. As Meyer(1999) defines, a 

component is “a software element that must be usable by developers who are not 

personally known to the component’s author to build a project that was not foreseen by 

the component’s author.”  

Research in Geographic Information Science has shown than many spatial data 

manipulation problems can be expressed as algebraic theories (Tomlin, 1990; Egenhofer 

e Herring, 1991; Frank e Kuhn, 1995; Güting, T. De Ridder et al., 1995; Frank, 1997; 

Erwig, Güting et al., 1999; Frank, 1999; Medak, 1999; Güting, Bohlen et al., 2003; 

Winter e Nittel, 2003).  These algebraic theories formalize spatial components in a 

rigorous and generic way. This brings a second problem: how to translate an algebraic 
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specification into a programming language. Ideally, the resulting code should as 

expressive and generic as the original algebraic specification. In practice, limits of the 

chosen programming language interfere in the translation. For example, the Java 

programming language is unable to express generic data types. Similar problems arise 

in other languages, such as C++ and C# (Hughes, 1989).  

As an answer to the challenges of translation of algebraic specifications into 

computer languages, there has been a growing interest in functional languages. 

Functional programming is so called because a program consists entirely of functions 

(Hughes, 1989). The main program itself is written as a function which receives the 

program’s input as its argument and delivers the program’s output as its result. Features 

of modern functional languages also include list-processing functions, higher-order 

functions, lazy evaluation and support for generic programming. These features allow a 

close association between abstract specifications and computer code. The resulting 

programs are more concise and more accurate. Since the modules are smaller and more 

generic, they can be reused more widely (Hughes, 1989). 

Recently, researchers in GIScience have argued about the benefits of functional 

programming for geospatial application development and prototyping of novel ideas 

(Frank e Kuhn, 1995; Frank, 1997; Frank, 1999; Medak, 1999; Winter e Nittel, 2003). 

Among the proposed benefits of functional programming for GIS is the ability to build 

complex systems from small parts (Frank e Kuhn, 1995). Each of these small parts is 

expressed as an algebra and developed in a rigorous and testable fashion. The resulting 

algebras are abstract building blocks which can be combined to create more complex 

solutions.  

However, developing an entire GIS in a functional language is not feasible. 

Support for spatial databases needs a large set of I/O operations, which are cumbersome 

to implement in functional languages. Event-driven user interfaces are better 

implemented with callback protocols and are difficult to specify formally. It is also not 

practical to double services already available in imperative languages such as C++ and 
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Java. This is especially true for spatial databases, where applications such as 

PostGIS/PostgreSQL offer a good support for spatial data management. 

Our hypothesis is that to integrate functional programming and spatial 

databases for GIS application development, we should build a functional GIS on top of 

an existing spatial database support. We then use each programming paradigm in the 

most efficient fashion. We rely on imperative languages such as C++ to provide spatial 

database support and we use functional programming for building components that 

provide data manipulation algorithms.  

To assess our hypothesis, we have built TerraHS, an application development 

system that enables developing geographical applications in the Haskell functional 

language. TerraHS uses the data handling abilities provided by TerraLib. TerraLib is a 

C++ library that supports different spatial database management systems, and that 

includes many spatial algorithms. As a result, we get a combination of the good features 

of both programming styles. Our hypothesis is tested by developing a Map Algebra 

using TerraHS.  

This thesis describes our work to corroborate our hypothesis. We briefly review 

the literature on functional programming and its use for GIS application development in 

Chapter 2. We describe how we built TerraHS in Chapter 3. In Chapter 4, we show the 

use of TerraHS for developing a Map Algebra. We close the work (in Chapter 5) by 

pointing out future lines of research.  
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CHAPTER 2 

THEORETICAL FOUNDATIONS 

This chapter presents the foundations for our work. Given that functional programming 

may be unfamiliar to the reader, we present a brief tour of the Haskell syntax, to help in 

understanding of our work in Chapters 3 and 4. We also present important references 

that link functional programming and GIS. 

2.1 Functional Programming 

Almost all programs currently developed use imperative programming.  Imperative 

programming uses assignment of values to variables and explicit control loops, and is 

supported by languages such as C++, Java, Pascal, and FORTRAN. In this work, we 

highlight functional programming, which considers that computing is evaluating 

mathematical functions. Functional programming stresses functions, in contrast with 

imperative programming, which stresses changes in state and sequential commands 

(Hudak, 1989). Backus (1978) presents a comparison between the functional and 

imperative programming styles. According to Backus, imperative languages are 

versions of the Von Neumann computer: 

“.. use variables to imitate the computer's storage cells; control statements 

elaborate its jump and test instructions; and assignment statements imitate its 

fetching, storing, and arithmetic”. 

Consider an imperative program that calculates the sum of all members in a list, in 

written in the imperative language C: 

sum = 0; 
for (int i = 0; i < n ; i++)  
 sum = sum + list[i]; 

This program has several properties:  

• Its statements act on an invisible "state" according to complex rules. 
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• It is not hierarchical. Except for the right side of the assignment statement, it 

does not compose complex entities from simpler ones. (Larger programs, 

however, often do.) 

• It is repetitive. One must mentally execute it to understand it. 

• It computes word-at-a-time by repetition (of the assignment) and by change (of 

variable i). 

• Part of the data, n, is in the program; thus it lacks generality and works only for 

lists of length n. 

The functional equivalent (in Haskell) does not have any variable updates.  

sum [] = 0 
sum (x:xs) = x + (sum xs) 

This program version uses two important features in functional language: 

recursion and pattern matching. Pattern matching is the act of checking for the presence 

of a given pattern. Standard patterns include variables, constants, the wildcard pattern, 

patterns for tuples, lists, and algebraic constructors. The first line says the sum of an 

empty list is 0. In the second line, (x:xs) stands for a list as a tuple. The head of the 

list is x and the rest of the list is xs. The second line reads: “The sum of a non-empty list 

is the sum of the first member with the rest of the list”.  

Functional programming is different from imperative programming. Functional 

programming contains no side effects and no assignment statements. A function 

produces a side effect if it changes some state other than its return value. For example, a 

function that prints something to the screen has side effects, since it changes the value 

of a global variable. Backus (1978) considers that a functional program has important 

advantages over its imperative counterpart. A function program: (a) acts only on its 

arguments; (b) is hierarchical and built from simpler functions; (c) is static and 

nonrepetitive; (d) handles whole conceptual units; (e) employs idioms that are useful in 

many other programs. 
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LISP (Mccarthy, 1963) was the first functional programming language. Recent 

functional languages include Scheme, ML, Miranda and Haskell. In this work we will 

uses the Haskell as programming language in the TerraHS software application 

presented in Chapter 4. The Haskell report describes the language as:  

“Haskell is a purely functional programming language incorporating many 

recent innovations in programming language design. Haskell provides higher-

order functions, nonstrict semantics, static polymorphic typing, user-defined 

algebraic datatypes, pattern-matching, list comprehensions, a module system, a 

monadic I/O system, and a rich set of primitive datatypes, including lists, arrays, 

arbitrary and fixed precision integers, and floating-point numbers” (Peyton Jones, 

2002). 

Haskell is a typeful programming language. It offers a rich type system, and 

enforces strong type checking. It is also a safe language. According to Pierce, “a safe 

language  protects its own abstractions and makes it impossible to shoot yourself in the 

foot while programming” (Pierce, 2002). For detailed description of Haskell, see 

(Peyton Jones, 2002), (Peyton Jones, Hughes et al., 1999) and (Thompson, 1999). 

2.2 A Brief Tour of the Haskell Syntax 

This section provides a brief description of the Haskell syntax. This description will 

help the reader to understand the essential arguments of this work. For the rest of this 

section, we use Hudak et al(1999), (Peyton Jones, 2001) and (Daume, 2004). 

2.2.1 Functions and Lists 

Functions are the core of Haskell. Consider the add function, shown below. It takes two 

Integer values as input and produces a third one. The first line defines its signature 

and the second defines its implementation. 

 add :: Integer → Integer → Integer 
      add x y =  x + y 

Lists are a commonly used data structure in Haskell. The list [1,2,3] in Haskell is 

shorthand for the list 1:2:3:[], where [] is the empty list and : is the infix operator 
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that adds its first argument to the front of its second argument (a list). Functions in 

Haskell can also have generic (or polymorphic) types, and most list functions are 

polymorphic. The following function calculates the length of a generic list, where [a] 

is a list of members of a generic type a, [] is the empty list, and (x:xs) is the list 

composition operation: 

length :: [a] → Integer 

 length [] = 0 

 length (x:xs) = 1 + length xs 

This definition reads “length is a function that calculates an integer value 

from a list of a generic type a. Its definition is recursive. The length of an empty list is 

zero. The length of a nonempty list is one plus the length of the list without its first 

member”.  The definition also shows the pattern matching features of Haskell. The 

length function has two expressions, which are evaluated in the order they are declared. 

Haskell lists can also be defined by a mathematical expression similar to a set 

notation:  

 [ x | x <- [0..100], prime x ] 

This expression defines “the list of all prime numbers between 0 and 100”.  This 

is similar to the mathematical notation  

{  x  |  x ∈ [0..100]  ∧  prime (x) }  

This expression is useful to express spatial queries. Take the expression: 

 [elem | elem <- (domain map) , (predicate elem obj)] 

It reads “the list contains the members of a map that satisfy a predicate that 

compares each member to a reference object”. This expression could be used to select 

all objects that satisfy a topological operator (“all roads that cross a city”). A further 

example is the following implementation of quicksort: 
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quicksort :: [a] → [a] 

quicksort [] = [] 

quicksort (x:xs) =  quicksort [y | y <- xs, y<x ] 

++ [x] 

++ quicksort [y | y <- xs, y>=x] 

2.2.2 Data Types  

Haskell has strict type checking. Each value has an associated type. Haskell provides 

built-in atomic types: Integer, Char, Bool, Float and Double.  From these types 

one can define types such as Integer→Integer (functions mapping Integer to 

Integer), [Integer] (homogeneous lists of integers) and (Char,Integer) 

(character, integer pairs). 

The user can define new types in Haskell using the data declaration, which 

defines a new type, or the type declaration, which redefines an existing type. For 

example, take the following definitions:  

 type Coord2D    = (Double, Double) 
 data Point      = Point Coord2D 
 data Line2D     = Line2D [Coord2D] 

In these definitions, a Coord2D type is shorthand for a pair of Double values.  

A Point is a new type that contains one Coord2D. A Line2D is a new type that 

contains a list of Coord2D. Type definitions can be recursive. Here is a simple 

declaration of an algebraic data type and a function accepting an argument of the type, 

which shows the basic features of algebraic data types in Haskell: 

data Tree a  = Leaf a | Branch (Tree a) (Tree a) 
size :: Tree a → Integer 
size (Leaf x) = 1 
size (Branch r l) = 1 + size r + size l 
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2.2.3 Higher-Order Functions 

An important feature of Haskell is higher-order functions. These are functions that have 

other functions as arguments. For example, the map higher-order function applies a 

function to a list, as follows: 

           map   :: (a→b) → [a] → [b] 
      map f  []      =  [] 
      map f (x:xs)   =  f x : map f xs 

This definition can reads as “take a function of type a→b and apply it 

recursively to a list of a, getting a list of b”. One example is applying a function that 

doubles the members of a list: 

map (double) [1, 2, 3, 4] ⇒ [2, 4, 6, 8] 

The map higher-order function is useful for GIS operations, since many of the 

GIS operations are transformations on lists. A simple example is a function that 

translates all the coordinates of a line.  

type Line = [(Double, Double)] 
translate :: (Double, Double) → [Line] → [Line] 
translate (x,y) lin = map add (x,y) lin 
  where add (x1,y1) (x2,y2) = ((x1+x2),(y1+y2)) 

Note the auxiliary add function defined by the where keyword. 

2.2.4 Overloading and Type Classes 

Haskell supports overloading using type classes. A definition of a type class uses the 

keyword class. For example, the type class Eq provides a generic definition of all types 

that have an equality operator:  

      class Eq a where  
    (==)  :: a → a → Bool 

This declaration reads "a type a is an instance of the class Eq if it defines is an 

overloaded equality (==) function." We can then specify instances of type class Eq 

using the keyword instance. For example: 
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instance Eq Coord2D where  

    ((x1,x2) == (y1,y2))  =  (x1 == x2 && y1 == y2) 

Haskell also supports a notion of class extension. An example is a class Ord 

which inherits all the operations in Eq, but in addition includes comparison, minimum 

and maximum functions: 

        class (Eq a) => Ord a  where 
    (<), (<=), (>=), (>)  :: a → a → Bool 
    max, min              :: a → a → a  

Type classes are the most unusual feature of Haskell’s type system. Type classes 

have proved extraordinarily convenient in practice (Hudak, Peyton Jones et al., 2007), 

since they are extensible and  type-safe.  

2.3 I/O in Haskell using Monads 

The final purpose of a spatial database application is to cause a side effect, such writing 

a new record in a database. However, side effects cause problems in functional 

languages (Peyton Jones, 2001). Things like “print a string to the screen” or “read data 

from a file” are not functions in the pure mathematical sense. Therefore, Haskell gives 

them another name: actions (Daume, 2004). Actions are part of a more general notion of 

computation. A computation is more general notion than a function. It includes issues 

such as dealing with failures and telling about success. A computation also includes the 

issues of sequencing. In essence, we need to represent success and failure. Also, we 

need a way to combine two successes. Finally, we need to be able to augment a previous 

success (if there was one) with some new value (Daume, 2004). We can fit this all into a 

class as follows: 

class Computation c where 
success  :: a -> c a 
failure  :: String -> c a 
sequence :: c a -> c b -> c b 
combine  :: c a -> (a -> c b) -> c b 

Computation is a type class which is parameterized on a type c. It has four 

actions. The success function takes a value of type a and returns it wrapped up by c, 
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representing a successful computation. The failure function takes a String (error 

message) and returns a computation representing a failure. The sequence function is 

used to support a sequence of unrelated actions. It enables a computation of type c a to 

be followed by a computation of type c b and still keep the correct result type. For 

example, we can build a sequence of actions that print a character on a screen and then 

save the same character on a file. The combine function enables using the result of an 

action to be used as the input for another action. We may read a character on a screen 

and then print the resulting value. It has two inputs: a previous computation (namely, c 

a) and a function which maps the value of that computation (the a) to a new 

computation (c b). It returns a new computation (c b) (Daume, 2004).   

The notion of computation is expressed more formally in Haskell by the idea of 

monads. Wadler (1990) proposed monads for structuring programs written in functional 

languages, based in the work of Eugenio Moggi (1991). The use of monads enables a 

functional language to simulate an imperative behavior with state control and side 

effects (Thompson, 1999). To define monads in Haskell, we use a shortened version of 

Computation:  

class Monad m where 
return :: a -> m a 
fail   :: String -> m a 
(>>)   :: m a -> m b -> m b 
(>>=)  :: m a -> (a -> m b) -> m b 

The functions return and fail match success and failure of the 

Computation class. The symbols (>>) and (>>=) match our definitions of sequence 

and combine, discussed above. An important example of a monad is the I/O monad, 

which deals with computations that affect the “state” of the world. The key notion is the 

idea of a type IO a. A computation of type IO a does some I/O, then produces a value 

of type a. For example, the function getChar has type IO Char, since it does some 

I/O and returns a type Char.  The function main (the main program loop in Haskell) 

has type IO(), since it does some I/O and returns nothing. Thus we can express the type 

IO a as: 

type IO a = World -> (a, World) 
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This type definition says that a value of type IO a is a function that, when 

applied to an argument of type World, delivers a new World with a result of type a 

(Peyton Jones, 2001). For instance, a function that prints something to the screen causes 

an effect in this World and returns it. In this case the World is a screen, but it could be a 

file, a database or some other I/O device.   

helloworld :: IO () 
helloworld = print “Hello World” 

Imagine that we want to write a little more sophisticated “hello world” program 

in Haskell. Our function takes a user’s input and then prints the given input. This needs 

the I/O monad, which is an instance of a Monad for the I/O type: 

instance Monad IO where 
    return a = ...    
    m >>= k  = ...    
    fail s   = ioError (userError s) 

Monadic I/O treats a sequence of I/O commands as a computation that interacts 

with the outside world. The program specifies an action, which the compiler turns into 

real I/O. For example, we can use the combine function (>>=) to get a line from the 

screen and print it: 

printName :: IO () 
printName = getLine >>=  print 

The combine function (>>=) is also described as “bind”. When the compound 

action (a >>= f) is performed, it performs action a, takes the result, applies f to it to 

get a new action, and then performs that new action (Peyton Jones, 2001). Suppose that 

now we want to precede the getLine function by a message to user using by the 

print function. We can’t use the combinator (>>=), because (>>=) expects a 

function with two arguments as its second argument, and not a function with just one 

argument. We must use the sequence function (>>). This function simply consumes 

the argument of the first action, throws it away, and carries out the next action. Now we 

can write. 

printName :: IO () 
printName = print "Enter a string" >> getLine >>=  print 
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Haskell has syntactic support for monadic programming, called the do notation. 

This notation is a simple translation to the (>>=,>>) functions. The syntax is much 

more convenient, so in practice everyone uses do notation for I/O-intensive programs in 

Haskell. But it is just notation! (Peyton Jones, 2001). Using the do notation we can 

write printName as follows 

printName :: IO () 
printName = do  

print "Enter a string"  
line <- getLine  
print line 

A further example of a monad is the Maybe monad, which deals with 

computations that might not succeed.  

data Maybe a = Nothing 
| Just a 

 
instance Monad Maybe where 

return x = Just x 
(Just x) >>= f = f x 
Nothing  >>= _ = Nothing 
fail _   = Nothing 

The Maybe monad is a polymorphic algebraic data type. In case of failure, it uses 

the  Nothing constructor; in case of success, it uses the Just constructor, with a value 

of type a. Suppose we want to write a function that finds a value in a given list and that 

treats errors graciously. This function can be written as: 

find :: (Eq a) => a -> [a] -> Maybe a 
find _ [] = Nothing 
find x (y:ys)  
 | (x == y) = Just y 

 | otherwise = find x ys 

In resume, the concept of monads is extremely powerful, and allows a rigorous 

definition of the notion of computation. Using monads, functional programming can be 

extended to include models of computation formely typical of imperative programming 

(Jones e Wadler, 1993). 
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2.4 Foreign Language Integration 

One feature that many applications need is the ability to call procedures written in some 

other language from Haskell, and preferably vice versa (Hudak, Peyton Jones et al., 

2007).  Interaction with other languages is crucial to any programming language. For 

example, GIS applications make extensive use of spatial data management that is 

offered by applications such as PostGIS/PostgreSQL written in C language.  It is 

unrealistic to develop such support using functional programming; instead, we want to 

make it easy to call them. Chakravarty (2003) proposed the Haskell 98 Foreign 

Function Interface (FFI), which supports calling functions written in C from Haskell 

and the order reversed. The FFI treats C as a lowest common denominator: once you 

can call C you can call almost anything else (Hudak, Peyton Jones et al., 2007). 

Suppose a function that plots a point in the screen written a C language. 

void plotPoint (double x, double y); 

We can call this procedure from Haskell, under the FFI proposal: 

foreign import ccall plotPoint :: Double → Double → IO() 

As usual, we use the IO monad in the result type of plotPoint to tell that 

plotPoint may perform I/O, or have some other side effect. However, some foreign 

procedures may have purely functional semantics. For example, consider the disjoint 

topologic operation applied to two points. 

   bool disjoint (double x1,double y1, double x2, double y2); 

This function has no side effects. In this case it is tiresome to force it to be in the 

IO monad. So the Haskell FFI allows one to use the unsafe keyword, and omit the “IO” 

from the return type, thus (Peyton Jones, 2001): 

foreign import ccall unsafe disjoint :: Double →  
Double → Double → Double → Bool 

Haskell types can be used in arguments and results just in types such as Int, 

Float, Double, and so on. However, most real program use memory references or 

pointers as an abstract object representation, structured types or arrays. For instance, 

consider the following structure data type. 
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struct Point { 
double x y; 

} 

The Point structure contains two attributes, x and y, which represent the 

Cartesian coordinates. The disjoint topologic operation takes two arguments of the Point 

data type structure. 

bool disjoint_p (Point* p1, Point* p2); 

Haskell provides the Ptr data type to represent a pointer to an object, or an array 

of objects. For instance, consider the following definition:   

type PointPtr = Ptr () 

This is equivalent in C language to: 

typedef void *PointPtr; 

However, this approach rules out distinguishing between different objects. To 

improve this, we can define typed pointers (Peyton Jones, 2001; Chakravarty, 2005).  

data Point = Point    
type PointPtr = Ptr Point 

As a result, pointers to objects are typed; we can then use different type class 

instances for different objects (Chakravarty, 2004). We can call the disjoint topologic 

operation (disjoint_p) under the FFI: 

foreign import ccall unsafe disjoint_p :: PointPtr →  
PointPtr → Bool 

To simplify code development, there are some tools available, called foreign 

function interface preprocessors for Haskell. These preprocessores simplify the task of 

interfacing Haskell programs with external libraries written in C Language. Some 

examples are (Yakeley, 2006): 

• GreenCard: Green Card is a foreign function interface preprocessor for 

Haskell, simplifying the task of interfacing Haskell programs to external 

libraries (which are normally exposed via C interfaces). 



 

 32 

• HaskellDirect: HaskellDirect is an Interface Definition Language (IDL) 

compiler for Haskell, which helps interfacing Haskell code to libraries or 

components written in other languages (C). An IDL specification specifies the 

type signatures and types expected by a set of external functions. One important 

use of this language neutral specification of interfaces is to specify COM 

(Microsoft's Component Object Model) interfaces, and HaskellDirect offers 

special support for both using COM objects from Haskell and creating Haskell 

COM objects.  

• C→→→→Haskell: A lightweight tool for implementing access to C libraries from 

Haskell.  

• HSFFIG: Haskell FFI Binding Modules Generator (HSFFIG) is a tool that takes 

a C library include file (.h) and creates Haskell Foreign Functions Interface 

import declarations for items (functions, structures, etc.) defined in the header.  

• Kdirect: A tool to simplify linking C libraries to Haskell. It is less powerful 

than HaskellDirect, but easier to use and more portable.  

These preprocessors deal with the interface between Haskell and C. However, 

there are many libraries implemented in object-oriented languages, such as C++ or Java. 

Some authors teach how to map object-oriented languages to Haskell (Peyton Jones, 

Meijer et al., 1998; Finne, Leijen et al., 1999; Meijer e Finne, 2000; Shields e Jones, 

2001; Chakravarty, 2004). These works point out that some features of object-oriented 

languages cannot be encoded directly in Haskell, such as inheritance and overloading. 

They present a way of calling of methods from object-oriented languages in a 

syntactically convenient type-safe manner. The authors encode class inheritance via 

phanton types and type class. Object-oriented overloading is encoded via name-

mangling, closed class and multiparameter type class. Chakravarty (2004) presents how 

to bind Haskell and Objective-C. Meijer (2000) discusses integration between Haskell 

and Java.  
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2.5 Algebraic Specification and Functional Programming 

In this section we discuss the relation between functional programming and algebraic 

specification. Guttag (1978) presents algebraic specification as tool to define abstract 

data types. The specification consists of a set of functions, where the values of the type 

are created and inspected only by calls to these functions. This allows the 

implementation to be changed without any changes to the external type interface. 

Algebraic specifications consist of three parts: a type, a set of operations and axioms, 

that describe how the operations are apply in specific data type.  

Functional programming languages are convenient to translate algebraic 

specifications into testable code (Frank e Kuhn, 1995; Frank e Medak, 1997). 

Functional languages express the semantics of abstract data types directly, an essential 

property for formal specification languages (Frank e Kuhn, 1995). To explain this point, 

consider a data type in Haskell: 

data Point = Pt Double Double 

Point is a concrete data type, where Pt defines a constructor to this data type. 

A constructor is an operator that builds new objects. In this case the constructor takes 

two arguments of type Double. We can instantiate this definition inside a Haskell 

program: 

pt1 = Pt 20.3 50.5 

Suppose we want to change the Pt constructor to take a single argument: 

data Point = Pt (Double, Double) 

This change will impact other programs that reference the Point data type, 

since this definition is implementation-dependent. Abstract data types hide the 

implementation from the user, and its data is only accessible through a set of operations. 

In Haskell, we can define these abstract data type as a type class: 

class Points a where 
createPoint :: Double → Double → a 
getX :: a → Double 
getY :: a -> Double 
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In this example, the type class Points has three operations: one constructor 

(createPoint) and two observers (getX and getY). An observer is an operator that 

lets you examine an object without changing it. We can then instantiate the type class 

Points and create a concrete data type:  

data Point = Pt Double Double 
instance Points Point where 

createPoint x y = Pt x y 
… 

The same operations could be defined to other implementation of the Point 

data type: 

data Point = Pt (Double, Double) 
instance Points Point where 

createPoint x y = Pt (x, y) 
… 

An algebraic specification can be applied to more than one abstract type, 

creating multisorted algebras. Frank (1999) and Lin (1998) propose using multisorted 

algebras for specifying GIS applications. We can implement multisorted algebras in 

Haskell, using a type class with multiple parameters. Suppose that we want to describe 

an interface to deal with points without specifying how their coordinates are expressed 

(such as integers or floats). We can define a type class Points with multiple 

parameters: 

class Points p a where 
createPoint :: a → a → p 
getx :: p → a 
gety :: p → a 

This type class can be instantiated to different data types: 

data DbPoint = DbPt Double Double 
instance Points DbPoint Double 
… 

or 

data InPoint = InPt Int Int 
instance Points InPoint Int 
… 
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2.6 Functional Programming for Spatial Databases and GIS Applications 

Research in Geographic Information Science has shown than many spatial data 

manipulation problems can be expressed as algebraic theories (Tomlin, 1990; Egenhofer 

e Herring, 1991; Frank e Kuhn, 1995; Güting, T. De Ridder et al., 1995; Erwig, Güting 

et al., 1999; Güting, Bohlen et al., 2003). This leads to a growing interest in using 

functional languages for GIS application development. (Frank, 1997; Frank, 1999; 

Medak, 1999; Winter e Nittel, 2003; Frank, 2005 ) 

Frank and Kuhn (1995) show the use of functional programming languages as 

tools for specification and prototyping of Open GIS specifications. The authors discuss 

the pros and cons of using functional languages for writing specification. The main 

advantage is their expressiveness: formal specifications can be translated directly into 

executable programs. and extensibility. The authors consider that functional languages 

lack certain desirable properties: they are not designed for a formal verification of 

specifications, nor for version management, or for documentation and cooperation in 

teams. However, there are no reasons why such tools could not be constructed for a 

functional language. As example, the authors presented the Point data type specification 

in a functional language. The specifications focus on equality operations, leaving 

additional operations on points (such as a distance) unspecified.  

Winter and Nittel (2003) present the results and experiences of applying a 

functional language as formal tool to writing specifications for the Open GIS proposal 

for coverages. The authors compare the functional language with UML in specification 

of geographic systems. The work shows how to map the Open GIS Coverage UML 

classes to Haskell classes and function declarations. This mapping allows the authors to 

discuss consistency, correctness and completeness of the Open GIS coverage 

specification. Medak (1999) develops an ontology for life and evolution of spatial 

objects in an urban cadastre. Based in category theory, (Frank, 2005), demonstrates how 

to extend and generalize Tomlin´s Map Algebra to apply uniformly for spatial, 

temporal, and spatio-temporal data. In his view, a map layer and a time series are 

functors, which map operations on single values (sum, mean and so on) to operations on 
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layers and time series. To these authors, functional programming languages satisfy the 

key requirements for specification languages, having expressive semantics and allowing 

rapid prototyping. Translating formal semantics is direct, and the resulting algebraic 

structure is extendible.  

As an example, consider the algebra of moving objects proposed by Güting et al 

(2003). They define a basic type moving point (mpoint) as a mapping between a 

temporal reference and a spatial location: 

mpoint = time → point 

A moving point can be used to describe how a car moves along a road. This basic 

type can have several functions, including: 

at:  mpoint × time → point    

minvalue:  mpoint → point  

start, stop: mpoint → time 

duration: mpoint → real 

trajectory:  mpoint → line  

A simple implementation of the mpoint data type in Haskell is:  

type Mpoint = [(Time, Point)] 

where Time and Point are suitably defined classes. Supposing the pairs (Time, 

Point) are ordered by Time, then coding these functions in Haskell is simple. For 

example, take the trajectory function: 

 trajectory :: MPoint → Line 
 trajectory mp = [snd (pr) | pr ← mp ] 

 The snd function extracts the second member of the pair (Time, Point). 

Thus, it is straightforward to move from an algebraic specification to its equivalent code 

in Haskell. The simplicity of this translation has led to many authors to conclude that 

Haskell is suitable for geospatial application development (Frank e Kuhn, 1995; Frank, 

1997; Frank, 1999; Medak, 1999; Winter e Nittel, 2003). However, these works do not 

deal with issues related to I/O and to database management. Thus, they do not provide 
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solutions applicable to real-life problems. To apply these ideas in practice, we need to 

integrate functional and imperative programming, as we describe in the next chapter.  
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CHAPTER 3 

TERRAHS 

3.1 Introduction 

In this Chapter, we present the design and implementation of TerraHS, a software 

application that enables developing geographical applications in functional 

programming using data stored in a spatial database. TerraHS links the Haskell 

language to the TerraLib GIS library. TerraLib is a class library written in C++, whose 

functions provide spatial database management and spatial algorithms. TerraLib is free 

software (Vinhas e Ferreira, 2005). TerraHS can be compiled in Linux or Windows 

platforms, where the requirements in both platforms are: ghc-6.4.1 (Glasgow Haskell 

compiler) or later, TerraLib-3.1.0, MySQL-4.1 and gcc-3.4.2. In Windows and in the 

Linux, the libraries TerraLib and MySQL should be compiled for gcc GNU compiler. 

That restriction is necessary because ghc linker requires the libraries provided by the  

gcc compiler, and does not support other compilers, such as Microsoft’s  Visual C++. 

TerraHS includes access to three basic resources for geographical applications: spatial 

representations, spatial operations and spatial databases, as shown in Figure 3.1.  

 

Figure 3.1 - TerraHS: General View 
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We present the TerraHS architecture in Section 3.2. In sections 3.3, 3.4 and 3.5 

we describe the main TerraHS resources.   

3.2 System Architecture 

TerraHS links to TerraLib using the Foreign Function Interface (FFI) (Chakravarty, 

2003) and to additional code written in C (TerraLibC), which maps the FFI to  

TerraLib methods. In the Figure 3.2, lighter colors represent the parts built in this work 

and darker colors represent the existing components. 

 

 

Figure 3.2 - TerraHS Architecture 

Lower layers provide basic services over which upper layer services are 

implemented. In the bottom layer, TerraLib supports different spatial database 

management and many spatial algorithms. In the second layer, TerraLibC maps the 

Terralib C++ methods to the Haskell FFI. In the third layer, the FFI enables calling the 

TerraLibC functions from Haskell. The two last layers contain a set of Haskell modules, 

which develop functional applications in Haskell using TerraLib. Haskell programmers 

normally use modules to build large programs. We group the modules in two main 

directories: TerraHS and Algebras. The TerraHS directory contains the following 

subdirectories: 

• TerraLibH: contains the modules that map TerraLib C++ classes to Haskell 

data types and functions, TeGeometry.hs, TeDatabase.hs and so on. 
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• Misc: contains the modules that provide auxiliary functions to TerraHS, such as 

Time.hs and Generic.hs. 

The Algebras directory contains algebras to support other Haskell programs. 

There is a main algebra, called base algebra, which provides basic spatial database 

management and spatial operations. In this work we have also built a map algebra, 

presented in Chapter 4. Other algebras can be implemented and shared in this directory, 

increasing the scope of TerraHS. 

3.2.1 Mapping TerraLib Classes to Haskell  

In section 2.4, we showed how to structure pointers in Haskell. This is especially 

important in libraries for GIS application that use complex data structures. In this 

section, we show how to map TerraLib classes and Haskell data types. For instance, 

consider the following TerraLib class. 

class TePoint { 
public: 
TePoint (double x, double y ) {…} 
double getX () ; 
double getY () ; 
... 

} 

The simplest mapping from Haskell to C uses phantom types: 

data TePoint = TePoint   ---  A phantom type 
type TePointPtr = Ptr TePoint -- pointer to TePoint class 
make_tePoint :: Double → Double → TePointPtr 
getX ::  TePointPtr → Double 
getY ::  TePointPtr → Double 

The TePoint type is called a phantom type because it does not appear as a value on the 

right side. This approach was used in other works (Jones, 1995; Finne, Leijen et al., 

1999; Meijer e Finne, 2000; Chakravarty, 2004). In this work, we prefer nonphantom 

types, which are more adequate in Haskell programs: 

data TePoint = TePoint (Double,Double) -- non-phantom type 
type TePointPtr = Ptr Point -- pointer to TePoint class 
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Nonphantom types, in a similar way to C++ classes, use constructors to build a 

new object. Based on this, we propose a type class for mapping pointers to algebraic 

data types and vice versa. 

class Pointer a where 
 -- | map haskell type to a pointer 
 toPointer :: a → (Ptr a) 
 -- | map a pointer to a Haskell type 
 fromPointer :: (Ptr a) → a 

Using the previous example, we have the following instance: 

instance Pointer TePoint where 
 toPointer TePoint (x, y) = make_tepoint x y  
 fromPointer ptr = TePoint((getX ptr ),(getY ptr ) ) 

The Pointer type class is instanced to other TerraLib data types, like: 

instance Pointer TeLine2D where .. 
instance Pointer TePolygon where .. 
… 

The pointer type class is used internally in TerraHS. Consider the following 

topologic function mapped from TerraLib: 

tedisjoint :: TePointPtr → TePointPtr → Bool 

This function uses a pointer from TePoint class. However, in Haskell, it is more 

interesting to use full Haskell types than pointers. Thus, we set up the following new 

operations that use Haskell types: 

disjoint :: TePoint → TePoint → Bool 
disjoint p1 p2 = tedisjoint (toPointer p1) (toPointer p2) 

The disjoint operation can be used directly in Haskell programs: 

pt1 = TePoint  (23.4, 45.6 ) 
pt2 = TePoint  (5.6, 78.3 ) 
d = disjoint pt1 pt2 
⇒ True 

Figure 3.3 – Using the disjoint operation. 

The above example is just illustrative. Topologic operations will be presented in 

the section 3.4.1. 
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3.2.2 Compiling TerraHS Programs  

A Haskell program has a main function. A simple program is shown in Figure 3.4: 

main:: IO() 
main = do  
 print “Hello World !!” 

Figure 3.4 – Haskell Hello World Program 

The first line has the main function. This is the entry point to the Haskell program, 

similar to main() in C programs. In Haskell, main takes nothing and returns an IO 

monad. To compile a Haskell program with ghc, you use a command such as: 

ghc -o program program.hs 

Before we start a TerraHS program, is necessary to import the modules that include the 

TerraLib data types, provided by the TerraHS.TerraLib module, Figure 3.5. 

import TerraHS.TerraLib 
main:: IO() 
main = do  
 pt1 = (TePoint (2,3) 
 print pt1 

⇒ TePoint (2,3) 

Figure 3.5 – A simple TerraHS program. 

After TerraHS is installed, a TerraHS program can be compiled using the following 

command: 

ghc -fglasgow-exts -ffi -o tehspr tehspr.hs -package TerraHS-0.1 

In Haskell, the libraries are divided into packages. For example, the base package 

contains the Prelude module. This package is available any extra flags; it will be 

automatically loaded the first time they are needed. Other packages can be loaded using 

the –package flag, as the TerraHS package. To use a spatial operation, we need to 

import the Algebras.Base.Operations module, Figure 3.6. This program is 

compiled the same way. 
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import TerraHS.TerraLib 
import Algebras.Base.Operations 
main:: IO() 
main = do  
 let pt1 = TePoint (2,3) 
 let pt2 = TePoint (7,3) 
 print distance pt1 pt2 

⇒ 5 

Figure 3.6 – Second TerraHS program. 

This program defines two points, and then it prints the distance between them. 

The data types and operations from TerraHS are covered in sections: 3.3, 3.4 and 3.5. 

3.3 Spatial Data Types 

TerraHS provides support to the basic types in Terralib. In its current version, it 

supports vector data structures and cell-space. This data types are accessible to Haskell 

program by importing the TerraHS.TerraLib module. 

3.3.1 Vector Data Structures 

Identifiable entities on the geographical space, or geo-objects, such as cities, 

highways or states are usually represented by vector data structures, such as point, line 

and polygon. These data structures represent an object by one or more pairs of Cartesian 

coordinates, as shown in Figure 3.7. 

 
Figure 3.7 - Vector representation - source: Casanova (2005). 

TerraLib represents coordinate pairs through the TeCoord2D data type. In 

TerraHS, this type is a tuple of real values. 
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 type TeCoord2D = (Double, Double) 

The TeCoord2D type is the basis for all the geometric types in TerraHS, namely: 

 data TePoint      = TePoint TeCoord2D 
 data TeLine2D     = TeLine2D [TeCoord2D] 
 type TeLinearRing = TeLine2D 
 data TePolygon    = TePolygon [TeLinearRing] 

The TePoint data type represents a point in TerraHS, and is a single instance of a 

TeCoord2D. The TeLine2D data type represents a line, composed of one or more 

segments and it is a vector of TeCoord2Ds (Vinhas e Ferreira, 2005). The TeLinearRing 

data type represents a closed polygonal line. This type is a single instance of a 

TeLine2D, where the last coordinate is equal to the first (Vinhas e Ferreira, 2005). The 

TePolygon data type represents a polygon in TerraLib, and it is a list of TeLinearRing. 

Other data types include: 

 data TePointSet   = TePointSet [TePoint] 
 data TeLineSet    = TeLineSet [TeLine2D] 
 data TePolygonSet = TePolygonSet [TePolygon] 

Figure 3.8 shows examples of vector data types. 

pt = TePoint  (4.2, 5.7)  
ln = TeLine2D [(2,5),(3,4), (5,6) ]  
pol = TePolygon [ (TeLine2D [(TePoint (4.2, 5.7) ), …] ) ] 
... 

Figure 3.8 - Example of the use of the vector data types 

3.3.2 Cell-Spaces 

TerraLib supports cell spaces. Cell spaces are a generalized raster structure where each 

cell stores a more than one attribute value or as a set of polygons that do not intercept 

one another. A cell space enables joint storage of the entire set of information needed to 

describe a complex spatial phenomenon. This brings benefits to visualization, 

algorithms and user interface (Vinhas e Ferreira, 2005). A cell contains a bounding box 

and a position given by a pair of integer numbers.  

 data TeCell = TeCell TeBox Integer Integer 
 data TeBox  = TeBox Double Double Double Double 
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The TeBox data type represents a bounding box and the TeCell data type 

represents one cell in the cellular space. The TeCellSet data type represents a cell space.  

 data TeCellSet = TeCellSet [TeCell]  

Consider the following cell space: 

   

Figure 3.9 - A cell space graphic representation 

This cell space in TerraHS is implemented as: 

cels = TeCellSet [ (TeCell (TeBox 0 0 1 1) 1 1),  
      (TeCell (TeBox 0 1 1 2) 2,1),  
      (TeCell (TeBox 1 1 2 2) 1,2),  
      (TeCell (TeBox 1 0 1 2) 2,2)] 

Figure 3.10 – A cell space in TerraHS 

Each cell has a unique identification and a unique reference to its position inside 

the cell space. It also has a set of attributes. Since these attributes are the same as those 

used by the geo-object data type, they will be discussed in the next section. 

3.3.3 Geo-Object Data Type 

In TerraLib, a geo-object is an individual entity that has geometric and descriptive parts.  

Identifier  

Identifiers are used to give to each geo-object a unique identity to distingue a geo-object 

in TerraLib database. In the TerraLib an identifier is represented by string.  

data ObjectId = ObjectId String 
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Attributes 

Attributes are the descriptive part of a geo-object. An attribute has a name (AttrName) 

and a value (Value). We support different data types for values. 

type AttrName = String 
data Value = StValue String| DbValue Double 

         |InValue Int | Undefined 
data Attribute = Attr (AttrName, Value) 

The same geo-object can contain different data types for values. For instance, a 

city can contain some attributes as: (“Name”,(StValue “São José dos Campos” 

)) , (“Population”,(InValue 580000)) and (“IDH”, DbValue 0.81)). 

Geometry 

Geometry is the spatial part, which can have different representations. The possible 

representations were defined in the section 3.3.1. 

data TeGeometry = GPt TePoint | GLn TeLine2D  
| GPg TePolygon |GCl TeCell (…) 

Figure 3.11 show an example of the use Geometry data type. 

geo1 = GPt ( TePoint  (4.2, 5.7) ) 
geo2 = GLn ( TeLine2D [(2,5),(3,4), (5,6) ] ) 
... 

Figure 3.11 – Example of use geometry data type 

Definition 

A geo-object in TerraHS is a triple: 

     data GeObject = GeoObject (ObjectId,[Atribute], [Geometry]) 

Figure 3.12 shows an example of the GeObject data type. 

attr1 = Attr (“Attr1”, (InValue 1) ) 
attr2 = Attr (“Attr2”, (InValue 2) ) 
 
geo1 = GPg (Polygon [ ( Line2d[(4,5),(3,2),… ] ) ] 
go = GeObject (ObjectId “1”, [attr1,attr2], [geo1] ) 

Figure 3.12 - Example of use GeoObject data type 
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3.4 Spatial Operations 

TerraLib provides a set of spatial operations over geographic data. Vinhas (2005) 

groups them in five classes: 

• Topological relationships among vector geometries: relationships include 

touch, contain, within, covered by. 

• Metric operations: area calculation, length or perimeter and geometries 

distance. 

• Building new geometries: buffer, centroid and convex hull. 

• Combining  geometries: include difference, union, intersection or symmetrical 

difference. 

• Map algebra: a set of procedures for handling maps. They allow the user to 

model different problems and to get new information from the existing data set. 

The core of TerraHS includes the above, except map algebra. We used Haskell 

type classes (Shields e Jones, 2001; Chakravarty, 2004) to define the spatial operations 

using polymorphism. They are accessible in Haskell by importing the 

Algebras.Base.Operations module. In the next sections we present the core 

TerraHS spatial functions. 

3.4.1 Topologic Operations 

Topologic operations can be applied for any combination of types, such as point, 

line and polygon. They are grouped in the TopologyOps type class: 

class TopologyOps a b where 
 disjoint :: a → b → Bool 
 intersects :: a → b → Bool 
   touches  ::  a → b → Bool 
 … 

The TopologyOps class defines a set of generic operations, which can be 

instantiated to several combinations of types:  
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 instance TopologyOps TePolygon TePolygon 
 instance TopologyOps TePoint TePolygon  
 instance TopologyOps TePoint TeLine2D  

Figure 3.13 shows an example of topologic operations. 

pol1 = TePolygon[(TeLine2d [(1,1),(1,3),(3,3),(3,1),(1,1)])] 
pol2 = TePolygon[(TeLine2d [(2,2),(2,4),(4,4),(4,2),(2,2)])] 
test = intersect pol1 pol2 
⇒ True 

Figure 3.13 - Topologic operations 

3.4.2 Centroid Operation 

Centroid is the term given to the center of an area, region, or polygon. It is described as 

an x,y coordinate. 

class Centroid a where 
 centroid :: a -> TeCoord2D 

In the same way, centroid operation can be instantiated to several geometric types: 

instance Centroid TePolygon where 
instance Centroid TeLine2D where 
instance Centroid TePointSet where 
… 

Figure 3.14 shows an example of a centroid operation. 

pol1 = TePolygon [(TeLine2d [(1,1),(1,3),(3,3),(3,1),(1,1)])] 
center = centroid pol1 
⇒ TePoint (2,2) 

Figure 3.14 - Centroid operation 

3.4.3 Overlay Operations 

Overlay operations, or set operations, is other important class of operations provided in 

TerraHS. These operations were grouped in  the Overlay type class:  

class Overlay a where 
  union   :: [a] → [a] → [a] 
  intersection  :: [a] → [a] → [a] 
  difference  :: [a] → [a] → [a] 
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We provide in TerraHS-0.1, the instance of Overlay for the Polygon data 

type: 

instance Overlay TePolygon where … 

Example: 

pol1 = TePolygon [ (Line2d [(1,1),(1,3),(3,3),(3,1),(1,1)])] 
pol2 = TePolygon [ (Line2d [(2,2),(2,4),(4,4),(4,2),(2,2)])] 
ps = union [pol1] [pol2] 
⇒ [(TePolygon [TeLine2D [(1.0,1.0),(1.0,3.0),(2.0,3.0), 
(2.0,4.0), (4.0,4.0),(4.0, 2.0),( 3.0, 2.0),(3.0, 1.0), 
(1.0, 1.0) ] ] ] 

Figure 3.15 - Example of overlay operation 

3.4.4 Metric operations 

TerraHS proves some important metric operations:  

• distance : calculate the Euclidian distance between two points. 

distance :: TePoint → TePoint → Double  

• llength: Returns the length of a Line 2D. 

llength :: TeLine2D → Double 

• polarea: Calculates the area of a polygon 

pol_area :: TePolygon → Double 

Examples: 

l =  (TeLine2D [ (1.0,1.0),(1.0,2.0),(1,7) ] ) 
len = llength l 
⇒ 6 

dis = distance (TePoint (2,3)) (TePoint (7,3))  
⇒ 5 

Figure 3.16 – Example of metric operations 
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3.5 Spatial Database Access 

One of the main features of TerraLib is its use of different object-relational database 

management systems (OR-DBMS) to store and retrieve the geometric and descriptive 

parts of spatial data (Vinhas e Ferreira, 2005). TerraLib follows a layered model of 

architecture, where it plays the role of the middleware between the database and the 

final application. Integrating Haskell with TerraLib enables an application developed in 

Haskell to share the same data with applications written in C++ that use TerraLib, as 

shown in Figure 3.17. 

 

Figure 3.17 - Using the TerraLib to share a geographical database, adapted from Vinhas 
e Ferreira (2005). 

A TerraLib database access does not depends on a specific DBMS and uses an abstract 

class called TeDatabase (Vinhas e Ferreira, 2005), as shown in Figure 3.18: 

 
Figure 3.18 - TerraLib database drivers - source: Vinhas and Ferreira (2005)   

In TerraHS, the database classes are algebraic data types, where each constructor 

represents a subclass. 
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data TeDatabase = TeMySQL String String String String 
  | TePostgreSQL String String String String 

A TerraLib layer aggregates spatial information located over a geographical 

region and that share the same attributes. A layer is identifier in a TerraLib database by 

its name (Vinhas e Ferreira, 2005). 

 type TeLayerName = String 

The Algebras.Base.GeoDatabases module provides the GeoDatabases type class. 

This type class provides generic functions for storage, retrieval of geo-objects from a 

spatial database.  

class GeoDatabases a where 
 open :: a → IO (Ptr a) 
 close :: (Ptr a) → IO () 
 retrieve :: (Ptr a) → TeLayerName → IO [GeObject] 
 store ::(Ptr a) → TeLayerName → [GeObject] → IO Bool   
 errorMessage :: (Ptr a) → IO String 

These operations will then be instantiated to a specific database, such as mySQL. 

 instance GeoDatabases TeDatabase where … 

Figure - 3.19 shows an example of a TerraLib database access program. 

import Algebras.Base.GeoDatabases -- database operations 
import TerraHS.TerraLib  -- TeMySQL type 
 

host = “sputnik” 
user = “Sergio” 
password = “terrahs” 
dbname = “Amazonia” 
main:: IO() 
main = do  
 -- accessing TerraLib database 

 db <- open (TeMySQL host user password dbname) 
 -- retrieving a geo-object set 

geos <- retrieve db “cells”  
 geos2 <- op geos – op is a manipulation operation 
 -- storing a geo-object set 

store db “newlayer” geos2 
close db 

Figure - 3.19  - Acessing a TerraLib database using TerraHS 
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In this chapter we have presented TerraHS, a software developed in Haskell language 

for GIS application developing. Its main contribution is to provided basic spatial 

operations and structures for prototyping novel ideas in GisScience. As a validation, we 

will present in the next chapter the map algebra proposed in Câmara (2005). 
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CHAPTER 4 

A GENERALIZED MAP ALGEBRA IN TERRAHS 

4.1 Introduction 

One of the important uses of functional language for GIS is to enable fast and sound 

development of new applications. As an example, this section presents a map algebra in 

a functional language. In GIS, maps are continuous variables or categorical 

classifications of space (for example, soil maps). Map Algebra is a set of procedures for 

handling maps. They allow the user to model different problems and to get new 

information from the existing data set.  For this example, we use the map algebra 

proposed in Câmara et al. (2005). The authors describe the design of a map algebra that 

generalizes Tomlin’s map algebra by incorporating topological and directional spatial 

predicates. In the next section, we describe the algebra and implement it. We have 

included the discussion from Câmara et al. (2005) in sections 4.2 and 4.3 as a support 

for the reader.   

4.2 Tomlin’s Map Algebra: a brief review 

The main contribution to map algebra comes from the work of Tomlin (1983). Tomlin’s 

model uses a single data type (a map), and defines three types of functions. A map is 

composed by zones, where a zone can contain one or more locations. Tomlin defines 

three types of higher-order functions for maps. These functions apply a first-order 

function to all elements of map, according to different spatial restrictions: 

• Local functions. The value of a location in the output map is computed from the 

values of the same location in one or more input maps. They include logical 

expressions such as “classify as high risk all areas without vegetation with slope 

greater than 15%” (Figure 4.1 - a) 

• Focal functions. The value of a location in the output map is computed from the 

values of the neighborhood of the same location in the input map. They include 
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expressions such as “calculate the local mean of the map values” (Figure 4.1.b). 

Focal functions use the condition of adjacency, which matches the spatial predicate 

touch. 

• Zonal functions: The value of a location in the output map is computed from the 

values of a spatial neighborhood of the same location in an input map. This 

neighborhood is a restriction on a second input map. They include expressions such 

as “given a map of cities and a digital terrain model, calculate the mean altitude for 

each city” (Figure 4.1.c). Zonal functions use the condition of topological 

containment, which matches the spatial predicate inside.  

  

 

a. Local operation b. Focal operation c. Zonal operation 

Figure 4.1. Tomlin’s operations for map algebra (source: Tomlin (1983)) 

There are two classes of functions in map algebra. First order functions take values as 

arguments. Higher order functions are functions that have other functions as arguments. 

Higher order functions are the basis for map algebra operations (Frank, 1997). An 

example of a higher order function is “classify as high risk all areas without vegetation 

with slope greater than 15%”. In this case, the first-order function is a selection 

procedure (test if slope > 15%) and the higher-order function is the classification 

function, which applies the selection function to all regions of the map.  

 Examples of first-order functions include: 



 

 55 

• Single argument mathematical functions: log, exp, sin, cosine, tan, 

arcsin, arccosine, arctan, sinh, cosineh, tanh, arcsinh, 

arccosineh, arctanh, sqrt, power, mod, ceiling, floor. 

• Single argument logical function:  not. 

• Multiargument functions: sum, product, and, or, maximum, minimum, 

mean, median, variety, majority, minority, ranking, count. 

4.3 Research challenges for map algebra 

Tomlin’s map algebra has become as a standard way of processing coverages, 

especially for multicriteria analysis. In recent years, several extensions to map algebra 

have been proposed. These include the GeoAlgebra of Takeyama and Couclelis (1997), 

an extension of map algebra that allows for flexible definitions of neighborhoods. Pullar 

(2001) developed MapScript, a language that allows control structures and dynamical 

models to be incorporated into map algebra. Ostlander (2004) suggests how map 

algebra could be embedded in a web service. Mennis et al. (2005) propose an extension 

of map algebra for spatio-temporal data handling. Frank (2005) discusses how map 

algebra can be formalized in a functional programming context and how this approach 

provides support both for spatial and spatio-temporal operations. Nevertheless, all 

extensions share the ad hoc nature of Tomlin’s original proposal. They accept the 

foundations of Tomlin’s algebra as a basis for their work. 

 Therefore, one of the open challenges in spatial information science is to 

develop a theoretical foundation for map algebra. We need to find out if Tomlin’s map 

algebra can be part of a more general set of operations on coverages. We state these 

questions as: “What is the theoretical foundation for map algebra?” “Could this 

theoretical foundation provide support for a more generic map algebra?” 

 The proposal by Câmara et al. (2005) is a map algebra that generalizes Tomlin’s 

map algebra by incorporating spatial predicates. The idea is further developed in the 

next sections and then applied in a functional programming context. 
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4.4 Spatial predicates as a basis for Map Algebra 

As we show in the previous section, spatial operations in Tomlin’s map algebra use only 

two topological predicates (‘touch’ and ‘inside’). It is natural to extend map algebra to 

use a more general set of spatial predicates. We take the standard set  of topological 

predicates {‘disjoint’, ‘equal’, ‘touch’, ‘inside’, ‘overlap’, ‘contains’, ‘intersects’}, 

which cover all vector area-area relations, as proposed by  by Egenhofer and Herring 

(1991) and adopted by the Open Geospatial consortium (Ogc, 1996). The 9-intersection 

model also distinguishes 33 relations between simple lines, 19 between simple lines and 

simple regions, 2 between points and 3 between points and regions or lines.  The works 

of Winter (1995) and Winter and Frank (2000) extend this definition to the application 

to raster representations.  

The proposal by Câmara et al. (2005) is to develop a map algebra that uses the 

Open GIS topological spatial predicates. This extended algebra conveys all Tomlin’s 

algebra operations and enables operations that are not directly expressible by his 

proposal.  In what follows, we show how this extended map algebra can be expressed 

succinctly and elegantly in Haskell.  

4.5 The Open GIS Coverage in Haskell  

Our map algebra is based on the coverage defined by the Open GIS consortium (Ogc, 

2000). A coverage in a planar-enforced spatial representation that covers a geographical 

area and divides it in spatial partitions that may be either regular or irregular. A 

coverage is a function cov:: E→ A, where: 

• The domain is finite collection, where each element is located in space. 

• The range is a set of attribute values. 

For each geographic element e ∈ E, a coverage function returns a value cov (e) = a, 

where a ∈ A. A geographical element can represent a location, area, line or point. For 

retrieving data from a coverage, the Open GIS specification propose describes a discrete 

function (DiscreteC_Function), as shown in Figure 4. below. 
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 Figure 4.2 - The Open GIS discrete coverage function – source: (Ogc, 2000). 

The DiscreteCFunction data type describes a function whose spatial domain and whose 

range are finite. The domain consists of a finite collection of geometries, where a 

DiscreteCFunction maps each geometry for a value (Ogc, 2000). Based on the Open 

GIS specification, we define the type class Coverages in Haskell. 

class Coverages cov where 
 evaluate :: (Eq a, Eq b) => cov a b → a → Maybe b 
 domain   :: cov a b → [a]    
 num      :: cov a b → Int 
 values   :: cov a b → [b] 
 new_cov  :: [a] → (a → b ) → (cov a b) 
 fun      :: (cov a b) → (a → b) 

The type class Coverages generalizes and extends the DiscreteCFunction class. Its 

functions are parameterized on the input type a and the output type b.  It provides the 

support for the operations proposed by the DiscreteCFunction: 

• evaluate is a function that takes a coverage and an input value a and 

produces an output value (“give me the value of the coverage at location a”).  

• domain is a function that takes a coverage and returns the values of its 

domain. 

• num returns the number of elements of the coverage’s domain. 

• values returns the values of the coverage’s range.  

We propose two extra functions: new_cov and fun, as described below.  
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• new_cov, a function that returns a new coverage, given a domain and a 

coverage function.  

• fun:  given a coverage , returns its  coverage function. 

We define the Coverage data type to use the functions of the generic type class 

Coverages. The Coverage data type is also parameterized. 

data Coverage a b = Coverage ((a → b), [a]) 

The data type Coverage has two components: 

• A coverage function that maps an object of generic type a to generic type b. 

• A domain of objects of the polymorphic type a.  

The instance of the type class Coverages to the Coverage data type is shown below: 

 instance Coverages Coverage where 
  new_cov a f = (Coverage (f, a)) 

  evaluate f o 
     | (elem o (domain f)) = Just ((fun f) o)   
        | otherwise = Nothing  

  domain (Coverage (f, a)) = a 
  num f = length (domain f) 
  values f  = map (fun f) (domain f) 
  fun (Coverage (f,_)) = f 

Figure 4. show an example of the Coverage data type.  

c1 :: Coverage String Int 
c1 = new_cov [”ab”,”abc”,”a”] length 
values c1 
⇒ [2,3,1] 
evaluate c1 “ab” 
⇒ Just 2 
evaluate c1 “ad” -- c1 does not contain “ad”  
⇒ Nothing 

Figure 4.3 -  Example of use of the Coverage  data type. 
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4.6 Map Algebra Operations 

There are two classes of map algebra operations: nonspatial and spatial. For nonspatial 

operations, the value of a location in the output map is obtained from the values of the 

same location in one or more input maps. They include logical expressions such as 

“classify as high risk all areas without vegetation with slope greater than 15%”, 

“Select areas higher than 500 meters”, “Find the average of deforestation in the last 

two years”, and  “Select areas higher than 500 meters with temperatures lower than 10 

degrees”. Spatial functions are those where the value of a location in the output map is 

computed from the values of the neighborhood of the same location in the input map. 

They include expressions such as “calculate the local mean of the map values” and 

“given a map of cities and a digital terrain model, calculate the mean altitude for each 

city”.   

Nonspatial operations are higher-order functions that take one value for each 

input map and produce one value in the output map, using a first-order function as 

argument.  These include single argument functions and multiple argument functions 

(Câmara, Palomo et al., 2005). Spatial operations are higher-order functions that use a 

spatial predicate (some examples of spatial predicates are shown in Figure 4.4). These 

functions combine a selection function and a multivalued function, with two input maps 

(the reference map and the value map) and an output map (Câmara, Palomo et al., 

2005).  

 
Figure 4.4 Examples of spatial predicates 
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Spatial functions generalize Tomlin’s focal and zonal operations and have two 

parts: selection and composition. For each location in the output map, the selection 

function finds the matching region on the reference map. Then it applies the spatial 

predicate between the reference map and the value map and creates a set of values. The 

composition function uses the selected values to produce the result (Figure 4.1). Take 

the expression “given a map of cities and a digital terrain model, calculate the mean 

altitude for each city”.  In this expression, the value map is the digital terrain model and 

the reference map is the map of cities. The evaluation has two parts. First, it selects the 

terrain values inside each city. Then, it calculates the average of these values.  

 

Figure 4.1-Spatial operations (selection + composition).Adapted from (Tomlin, 1990) 

 

4.7 Map Algebra Operations in TerraHS 

In TerraHS, we use a generic type class for map algebra operations, as follows: 

class (Coverages cov) => CoverageOps cov where 
single   :: (b → c) → (cov a b) → (cov a c) 
multiple :: ([b]→c) → [(cov a b)] → (cov a b)→(cov a c) 

 select   :: (cov a b) → (a → c → Bool) → c → (cov a b)  
compose  :: ([b] → b) → (cov a b) →  b 

 spatial  :: ([b] → b) → (cov a b) → (a → c → Bool)  
  → (cov c b) → (cov c b) 

The implicit assumption of these is that the geographical area of the output map is the 

same as reference map.  
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 The instantiation of the coverage operations is provided by: 

 instance CoverageOps Coverage where 
      -- non-spatial operation on a single coverages 
 single g c1 = new_cov (domain c1)  ( g . (fun c1)) 

-- non-spatial operation on multiple coverages 
 multiple fn clist c1 = new_cov (domain c1)  
                            (\x ->  fn (faux clist x)) 

-- spatial selection 
 select cov pr o = new_cov sel_dom (fun cov) 
  where sel_dom = [l | l <- (domain cov) , (pr l o)] 

-- spatial composition 
 compose f cov = (f (values cov)) 
      -- spatial operation : selection + composition 
 spatial fn c1 predic cref = new_cov (domain cref)    
              (\x -> compose fn (select c1 predic x)) 

The single function has two arguments: a coverage and a first-order function f. It 

returns a new coverage, whose domain is the same as the input coverage. The coverage 

function of the output map is the composition of the coverage function of the input map 

and the first-order function g. Figure 4. shows an example of a single argument 

function. 

 single g c1 = new_cov (domain c1)  ( g . (fun c1))  
 

values c1 
⇒ [2, 4, 12] 
c2 = single square c1  
values c2 
⇒ [4, 16, 144] 

Figure 4.6 - Example of use of the single argument function 

The multiple function has three arguments: a multivalued function,  a coverage list, 

and a reference coverage. It applies a multivalued function to the coverage list. The 

result has thea same domain as the reference coverage.  The new coverage function is 

defined using an auxiliary function that scans the input list:  

 multiple fn clist c1 = new_cov (domain c1)  
                            (\x -> fn (faux clist x)) 
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For each location x of the reference coverage, the auxiliary function faux  applies the 

multiargument function in the input list of maps. The result is the output value for 

location x. The function faux also handles cases where there are multiargument function 

fails to returns an output value.  

faux :: (Eq a, Eq b, Coverages cov) => [(cov a b )] -> a -> [b]  
faux [] _ = [] 
faux (m:ms) e = faux1 (evaluate m e) 
  where 
  faux1 (Just v)  = v : (faux ms e) 

faux1 (Nothing) = (faux ms e) 

Figure 4. shows an example of multiple.  

values c1 
 [2, 4, 8] 
values c2    
⇒ [4, 5, 10] 
c3 = multiple sum [c1, c2] c1 
values c3 
⇒ [6, 9, 18]  

Figure 4.7 - Example of use of multiple 

The spatial selection has three arguments: an input coverage, a predicate and a 

reference element.  It selects all elements that satisfy a predicate on a reference object 

(“select all deforested areas inside the state of Amazonas”).  

   select c prd o = new_map sel_dom (fun c) 
where 

 sel_dom = [loc | loc ← (domain m) , (prd loc o)]  

This function takes a reference element and an input coverage. It creates a 

coverage that contains all elements of the input that satisfy the predicate over the 

reference element. Figure 4. shows an example. 

line= TeLine2D [(1,2),(2,2),(1,3),(0,4)] 
domain c1  
⇒ [TePoint(4,5),TePoint (1,2),TePoint (2,3),TePoint (1,3)] 
c2 = select c1 intersects line 
domain c2   
⇒ [TePoint (1,2), TePoint (1,3)] 

Figure 4.8 - Example of select. 
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The composition function combines selected values using a multivalued 

function. In Figure 4., the compose function is applied to coverage c1 and to the 

multivalued function sum. 

 compose f m = (f (values m))  

values c1  
⇒ [2, 6, 8] 
compose sum c1  
⇒ 16  

Figure 4.9 - Example of compose. 

The spatial function combines spatial selection and composition. The output 

coverage has the same domain as the reference coverage. For each location in the output 

coverage, the selection function produces a set of values that satisfy a spatial predicate.. 

The composition function uses the selected values to produce the result. Figure 4.10 

shows an example.  

 spatial fn c prd cref = new_cov (domain cref)  
   (\x → compose fn (select c prd x)) 

domain c1  
= [TePoint(4,5),TePoint (1,2),TePoint (2,3),TePoint (1,3)] 
values c1 
= [2,4,5,10]  
domain c2  
= [(TeLine2D[(1,2),(2,2),(1,3),(0,4)])] 
c3 = spatial sum c1 intersects c2 
values m3 -- 4 + 10 
= [14] 

Figure 4.10 - Example of spatial 

The spatial operation selects all points of c1 that intersect c2 (which is a single line). 

Then, it sums its values. In this case, points (1,2) and (1,3) intersect the line. The sum of 

their values is 14.  
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4.8 Application Examples 

In the previous section we described how to express the map algebra proposed in 

Câmara et al. (2005) in TerraHS. In this section we show the application of this algebra 

to actual geographical data.  

4.8.1 Storage and Retrieval 

Since a Coverage is generic data type, it can be applied to different concrete types. In 

this section we apply it to the Geometry and Value data types available in the TerraHS, 

which represent, respectively, a region and a descriptive value.  TerraHS enables 

storage and retrieval of a geo-object set. To perform a map algebra, we need to convert 

from a geo-object set to a map and vice versa. 

toCoverage:: [GeObject]→ AttrName→ (Coverage Geometry Value) 
toGeObject:: (Coverage Geometry Value)→ AttrName→ [GeObject] 

Given a geo-object set and the name of one its attributes, the toCoverage 

function returns a coverage. Remember that a coverage type has one value for each 

region. Thus, a layer with three attributes it produce three coverages.  The toGeObject 

function inverts the toCoverage function. Details of these two functions are outside 

the scope of this work. Given these functions, we can store and retrieve a coverage, 

given a spatial database. 

retrieveCov::  
           TeDatabase→ LayerAttr→ IO (Coverage Geometry Value) 

retrieveCov db (layername, attrname) = do 
       db <- open db 
       geoset <- retrieve db layername 
       let  map = toCoverage geoset attrname 
       close db 
       return map 

The LayerAttr type is a tuple that represents the layer name and attribute 

name. The retrieveCov function connects to the database, loads a geo-object set, 

converts these geo-objects into a coverage, and return it as its output.  
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storeCov:: TeDatabase→ LayerAttr  
→ (Coverage Geometry Value) → IO Bool   

     storeCov db (layername, attrname) c = do 
    let geos = toGeObject c attrname 
    db <- open db 
    close db  
    let status = store db layername geos 
    return status 

The storeCov function converts a coverage to a geo-object set that will be 

saved in the database. We can now write a program that reads and writes a coverage in a 

TerraLib database. 

host = “sputnik” 
user = “Sergio” 
password = “terrahs” 
dbname = “Amazonia” 
main:: IO () 
main = do 
 let db = (TeMySQL host user pass dbname) 

cov <- retrieveCov db (“amazonia”,“deforest") 
-- apply a nonspatial operation 

 let defclass = single classify cov 
 storeCov db (“amazonia”, “defclass”)  defclass 

Figure 4.11 - Retrieving and storing a coverage in a TerraLib database 

4.8.2 Examples of Map Algebra in TerraHS 

Since 1989, the Brazilian National Institute for Space Research has been monitoring the 

deforestation of the Brazilian Amazon, using remote sensing images. We use some of 

this data as a basis for our examples. We selected, from (Aguiar, 2006), a data set from 

the central area of Pará, composed by a group of highways and two protection areas. 

This area is divided in cells of 25 x 25 km2, where each cell describes the percentage of 

deforestation and deforested area (Figure 4.2). 
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Figure 4.2 – Deforestation, Protection Areas and Roads Maps (Pará State) 

Our first example considers the expression: “Given a coverage of deforestation and 

classification function, return the classified map”. The classification function defines 

four classes: (1) dense forest; (2) mixed forest with agriculture; (3) agriculture with 

forest fragments; (4) agricultural area.   This function is: 

classify :: Value → Value 
classify (DbValue v)  
 | v < 0.2 = (StValue "1") 
 | ((v > 0.2) && (v < 0.5)) = (StValue "2") 
 | (v > 0.5) && (v < 0.8) = (StValue "3") 
 | v > 0.8 = (StValue "4") 

We obtain the classified coverage using the single operation together with the 

classify function: 

 def_class = single classify def_cov 
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Figure 4.3 – The classified coverage 

As a second example, we take the expression: “Calculate the mean deforestation for 

each protection area”. The inputs are: the deforestation coverage (def_cov), a spatial 

predicate (within), a multivalued function (mean) and the map of protected areas 

(prot_areas). The output is a deforestation coverage of the protected areas 

(def_prot) with the same objects as the reference coverage (prot_areas). We use 

the spatial higher-order operation to produce the output: 

def_prot = spatial mean def_cov within prot_areas    
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Figure 4.4 – Deforestation mean by protection area 

In our third example, we consider the expression: “Given a coverage containing roads 

and a deforestation coverage, calculate the mean of the deforestation along the roads”. 

We have as inputs: the deforestation coverage  (def_cov), a spatial predicate 

(intersect), a multivalued function (mean) and a road map (roads). The product is a 

coverage with one value for each road. This value is the mean of the cells that intercept 

this road. 

road_def = spatial mean def_cov intersect roads 
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Figure 4.5 – Deforestation mean along the roads 

4.9 Discussion of the Results 

The implementation of a map algebra in TerraHS shows the benefits of using functional 

programming for GIS application development. The resulting map algebra is compact, 

generic and extensible. It is also useful to compare this implementation with a similar 

product in an imperative language. Table 4.1 presents the total number of Haskell lines 

used to develop the map algebra.   
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Table 4.1 – Map Algebra in Haskell  

Number of source lines   
 

operations axioms total 

Data types 6 9 15 

Map Algebra 6 10 16 

Auxiliary 1 5 6 

Total 13 24 37 

For comparison purposes, the SPRING GIS (Câmara, Souza et al., 1996) includes a 

map algebra in the C++ language that uses about 8,000 lines of code. The SPRING map 

algebra provides a strict implementation of Tomlin’s algebra. Our map algebra allows a 

more generic set of functions than Tomlin’s at less than 1% of the code lines. This large 

difference comes from the use of the parameterized types, overloading and higher order 

functions, which are features of the Haskell language. Our work points out that 

integrating functional languages with spatial database is an efficient alternative in for 

developing and prototyping novel ideas in GIScience. The example shows the benefits 

on using functional programming, since it enables a fast prototyping and testing cycle. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORKS 

The hypothesis of our work was: to integrate functional programming and spatial 

databases for GIS application development, we should build a functional GIS on top of 

an existing spatial database support. We then use each programming paradigm in the 

most efficient fashion. To assess our hypothesis, we have built TerraHS, an application 

development system that enables developing geographical applications in the Haskell 

functional language. TerraHS uses the data handling facilities of the C++ GIS library 

TerraLib. We then applied TerraHS to the concrete case of developing a map algebra. 

We have shown that the resulting product is more expressive, more modular, and was 

developed faster than its equivalent in C++.  

Combining TerraHS and TerraLib enables the use of functional programming to real-

life problems, and is a contribution to make Haskell a more widely used tool for GIS 

application development. We use each programming style in the most efficient fashion. 

We rely on imperative languages such as C++ to provide spatial database support and 

we use functional programming for building parts that provide data manipulation 

algorithms.  

We now consider some future works: 

• Database Access:  The current version of TerraHS has a core of database access 

operations. It can write a new record but not change an existing one. Future 

versions of TerraHS will include operations such as update. 

• Spatiotemporal algebras: TerraHS is a good environment for development 

spatiotemporal algebras. For example, Güting (2005) defines an algebra for 

moving objects. His spatio-temporal data types for moving objects are 

embedded in a query language to answer queries as: “Given the trajectories of 

two airplanes, when they will pass over the same location?”. Similarly, Medak 
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(2001) proposes an algebra for modeling change in socio-economical units. 

Medak’s algebra provides answers to queries such as: “When was this parcel 

divided?” By using TerraHS, we can envisage developing a set of data types and 

operators for handling all types of spatiotemporal data.  

• Integration into GUI software: To improve the impact of applications 

developed in TerraHS, we need to integrate it into a user-friendly environment. 

This integration needs to provide an external shell that hides the more hard to 

learn parts of Haskell. 

We now summarize our main findings and contributions. The Haskell language 

provides efficient support for using functional programming for real applications. 

Haskell enforces a programming style that is both rigorous and expressive. Most GIS 

applications contain a core part that can be expressed by algebraic data types and 

thus can be nicely developed in Haskell. Applications such as TerraHS provide the 

missing link between spatial and spatiotemporal algebras and spatial databases. Our 

work has thus validated our initial hypothesis and provided a software component 

that can be useful in practice. We hope that TerraHS will be useful for developing 

complex and sound GIS applications using an innovative programming style. 
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