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Summary

The Brazilian Amazonia has long been recognised as a repository of ecological services not
only for the local communities, but also for the rest of the world. Based on information
from the Brazilian Geographical and Statistics Institute IBGE1, the region is characterised
of socioeconomic inequality with an impact on human well-being.

The concept of well-being has been the concern of sciences since Aristotle (384 - 322
BC), but there is no consensus around a single definition. Different aspects to measure the
human well-being include Gross Domestic Product, percentage of population with access
to electric power or measuring the distribution of income in society (Ghosh et al. (2013)).
In this work, we investigate a measure which is indirectly connected to well-being : electric
power consumption per capita.

We explore the information provided by DMSP2 satellite night-time imagery to measure
the energy consumption in Brazilian Amazonia for the decade 2000 - 2010. Comparison of
measured energy consumption with census data suggests it is valid to use the night-time
satellite images to measure electric power consumption.

According to the World Bank3 the electricity consumption per capita is a useful unite
to compare consumption between different regions. We develop an electricity consumption
per capita cellular space model for the Brazilian Amazonia by developing a population
distribution model and dividing with the measured electric power consumption. The model
provides information with a cell resolution of 10 km.

1http://www.ibge.gov.br
2http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
3http://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC
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Chapter 1

Introduction

The atlas of the 2010 Census1 by the Brazilian statistical agency (IBGE) approaches

several aspects of social and regional inequalities, such as cultural and environmental di-

versity; demographic characteristics; urbanization; network space; socioeconomic inequal-

ities; population structure; transport networks; and social, environmental and economic

indicators. Overall, the atlas of the 2010 Census reflects the well-being inequality in

Brazil.

Access to electric power is central to address the challenge of well-being achievement,

including poverty, hunger, education, health, partnerships and environmental sustainabil-

ity, as well as economic growth.

According to the World Bank Annual Report2 2013 expanding access to electricity

is essential to ending poverty. The UN Millennium Project3 describes the strong links

between energy services and achieving the Millennium Development Goals4 (MDGs). The

UN Millennium Project considers that without increased investment in the energy sector,

the MDGs will not be achieved in the poorest countries.

Effective policies to address the energy access problem need to be grounded in a robust

information base. Night-time light images are a useful spatial indicator of electric power

consumption. In this work, we explore the information provided by satellite nighttime

imagery to measure energy consumption and then to estimate the well-being.

In order to better understand the change of well-being inequality, this study investigates

the electric power consumption per capita which is indirectly connected to well-being. The

area of interest is the Brazilian Amazonia region, the world’s largest intact tropical rain

1www.ibge.gov.br/english/geociencias/geografia/atlas.shtm
2http://www.worldbank.org/annualreport2013
3http://www.undp.org/
4http://www.un.org/millenniumgoals
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forest of global interest, for the decade 2000 to 2010. The basis for our work is to consider

previous studies in population distribution modelling and the use of nighttime lights as

a population location and energy consumption indicator to develop an electric power

consumption per capita model.

Amaral et al. (2005) analyzing the correlation between DMSP night-time light foci

and electric power consumption, concluded that night-time light data are a consistent

indicator of human activity and energy consumption. The analysis considering only the

state of Pará in Brazil revealed a linear relation (R2 = 0.79) between population of 1996

and electric power consumption (R2 = 0.84) for 1999.

Amaral et al. (2012) propose a methodological approach to redistribute population

data obtained from polygonal census tracts into population density surfaces (grids) based

on a cell space database. A dasymetric map is developed using land cover data. Then, five

variables are selected as indicators of human presence: distance from roads, distance from

rivers, distance from urban nuclei, percentage of forest cover and slope. Fuzzy logic and

hierarchical analysis procedures are applied to determine the variable weights. Finally, the

census population count data are redistributed into cells. The method proposed by Amaral

et al. (2012) was applied for the municipality of Maraba in Brazil and was subsequently

adapted to the Sustainable Forest District of BR-163 municipalities.

Briggs et al. (2007) and Zeng et al. (2011) describe a GIS - based approach us-

ing remotely sensed land cover and night-time light emissions data to model population

distribution at the land parcel level across the European Union. Incorporation of light

emissions data was found to improve model performance considerably compared to models

based only on land cover data.

The objective of this work is to answer the question raised by Amaral et al. (2005)

paper: can we use night lights information derived from the Defense Meteorological Satel-

lite Program5 (DMSP) to estimate the improvement in quality of life (well-being) through

electric power consumption? For this, we investigate the spatio - temporal change of elec-

tric power consumption per capita in the Brazilian Amazonia region in the decade 2000

to 2010. We do this by developing a population distribution model and use night-time

images as an indicator of electric power consumption (Amaral et al. (2005)).

We hypothesize that the lit areas of DMSP images represent a higher quality of life

than the unlit areas. Change in night-time lights means change in the quality of life. We

test this hypothesis by following the method described in Chapter 2.

5http://ngdc.noaa.gov/eog/dmsp.html
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Chapter 2

Methodology

This section is structured as follows. First, we introduce the applied method by represent-

ing and describing the method flowchart (Section 2.1). Then, the DMSP night-time data

are represented (Section 2.2). The steps taken to develop the electric power consumption

model are described and we check the results validity comparing with census data (Sec-

tion 2.2). The method of the night-time population distribution model is described and

we check the reliability of the model using census data (Section 2.3). Finally, the electric

power consumption per capita cell model is presented (Section 2.4) as the research result.

2.1 Overview

This study is applied to the Brazilian Amazonia (Figure 2.1) for the decade 2000 to

2010. The statistical software R1 is used for statistical analysis of data and visualisation.

In addition, the open source geographic information system, QuantumGIS2 (QGIS) and

python scripting language are used for data viewing, editing and processing. All of the

indicator variables and data formed a TerraLib geographical database and visualised in

TerraView3 GIS system taking cells as units (10km x 10km) and generating a multivalued

set of cells (CellularSpace). The cellular space divided into a regular grid where each cell

in the grid has one or more attributes. TerraME4 modelling language, an extension of the

Lua programming language, is used for archival and retrieval of data stored in TerraLib

geographical database. The flowchart in Figure 2.2 represents the separate steps of the

research process in sequential order which are analyzed in this section.

1www.r-project.org/
2qgis.org/en/site
3www.dpi.inpe.br/terraview eng/index.php
4http://www.terrame.org/doku.php
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Night-time light images are used to model the electric power consumption. We use

sufficient cloudfree images. Ephemeral events, such as fires, sunlit data, glare, moonlit,

clouds and lighting features from the aurora have been discarded. However, night light

images cannot be assumed to represent a direct, linear proxy of energy consumption, but

these require a suitable method of estimation before to be used.

Figure 2.1: Brazilian Amazonia states (Pa = Pará, MT = Mato Grosso, MA = Maranhao,

RO = Rodonia, AM = Amazonas, TO = Tocantins, AC = Acre, AP = Amapa, RR =

Roraima).

We use our approach to correct the DMSP images based on the shift - based method

of satellite images geometric correctness of Zhao et al. (2015) and the intercalibration

method developed by Elvidge et al. (2000, 2009). The 2.3.1 and 2.3.2 sections describe

the applied method of DMSP images correctness: geometric correction, intercalibration.

Elvidge et al. (2000, 2009) intercalibration method uses as reference the area of Sicily, a

region characterized by stable night-time lights change from 1994 to 2008. In our approach

we first use the shift - based method of Zhao et al. (2015) to correct geometrically the area

of Sicily and then apply Elvidge et al. (2000, 2009) intercalibration method on the global

annual images.

After DMSP images correctness and since there are no electric power consumption

census data for Brazilian Amazonia, the area of São Paulo is used to develop a prediction

model. São Paulo is selected as an area close to the area of investigation with available

census data (section 2.3.3).
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Figure 2.2: Method flowchart.

In 2000 two satellites recorded data producing two different composites (Figure 2.3:

F142000, F152000). Thus, before applying the prediction model to the Brazilian Amazonia

area (Section 2.3.5) and to make full use of the information derived from the two satellites,

we produce one intra-annual composition applying the method Liu et al. (2012) propose

(Section 2.3.4).

The section 2.4 describes the development of the population distribution cell model

based on Amaral et al. (2005) method. Combining the electric power consumption and

population distribution cell models, the model of electric power consumption is developed

as the final step of this work.

2.2 DMSP night-time data

In the mid 1960s the Defense Meteorological Satellite Program (DMSP) of the US Depart-

ment of Defense began (Doll (2008)). The DMSP, previously known as Data Acquisition

and Processing Program (DAPP), was originally designed to provide visible and infrared

cloud cover imagery and weather data to support Department of Defense requirements.

In 1972 the data were declassified allowing access to the civil and scientific community

(Doll (2008)). However, from the time of declaration until 1992 the DMSP data were not

made available by the US Department of Defense and the scientists had access to the data

only from a film archive (Doll (2008)).

In 1994 the The National Geophysical Data Center (NGSC), one of three National

Oceanic & Atmospheric Administration National Data Centers (NOAA, NNDC) in U.S.

started working with the Defense Meteorological Satellite Program (DMSP) data. The
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NGDC Earth Observation Group (EOG) specializing in nighttime data observations, uses

DMSP imagery producing a time series of annual cloud free composites.

2.2.1 Satellites

The DMSP satellites fly in a sun synchronous near polar orbit at an altitude of 830

km above the surface of the earth, such that they typically pass over any area on earth

between 20:30 and 21:30 local time (Elvidge et al. (2000)).

Figure 2.3: Global DMSP-OLS Night-time Lights Time Series 1992 - 2013.

Each satellite is designated with a flight number and the year (F142000 is from DMSP

satellite number F14 for the year 2000). A set of annual composites is produced for each

nighttime light data collection from 1992 through 2012 (Figure 2.3). Since the lifespan of a

satellite is limited (6 to 8 years) and over time it is not able to record data, a replacement

satellite is used to ensure continuity. Thus, in most years two satellites recorded data

producing two different composites ((Elvidge et al., 2009)).

2.2.2 Sensors

The DMSP satellites use the Operational Linescan System (OLS). The OLS instrument

consists of two telescopes and a photo multiplier tube (PMT). One telescope is sensitive

to the visible/ near infrared radiation (0.40 - 1.10 um) and one to the thermal/ infrared

radiation (10.0 - 13.4 um). The PMT is sensitive to radiation from 0.47 to 0.95 um. Each
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of the Operational Linescan System (OLS) of the DMSP satellites with a field of view of

about 3000 km is able to provide a visible and infrared imagery of the global distribution

of clouds and cloud top temperature twice per day. The images’ nominal resolution is 0.56

km, which is smoothed on board into 5x5 pixel blocks to 2.8 km in order to reduce the

memory usage (Doll (2008)).

2.2.3 DMSP night-time images

The DMSP OLS sensors collect global visible and infrared (IR) cloud cover data. The

recorded data of each OLS sensor orbit are processed to find non-cloudy image pixels.

Over a year, all the non-cloudy pixels are averaged producing a global grayscale image.

The archive data set consists of low resolution global and high resolution regional of a 30

arc second grid, spanning -180 to 180 degrees longitude and -65 to 75 degrees latitude.

The 30 arc-second grid spacing is equal to about 1 kilometer. That number decreases in

the longitudinal direction as latitude increases. Global DMSP OLS night-time light time

series from 1992 to 2012 are openly accessible from NOAA 5website. Two DMSP data sets

are available, both made using all the available archived DMSP OLS smooth resolution

data for calendar years.

The data set from NOAA under the title Average Lights X Pct includes the night-time

light product derived from the average visible band digital number (DN) of cloud free light

detections multiplied by the percent frequency of light detection. This product contains

detections from fires and is used to identify gas flaring volumes (Elvidge et al. (2000,

2009)).

A number of constraints are used to produce the second data set under the title Aver-

age Visible Stable Lights and Cloud Free Coverages (Figure 2.3). Sunlit, glare, moonlit,

cloud observations and aurora lighting data have been excluded producing the highest

quality data for entry into the composites. This is the data set we use in this research

work.

2.3 Electric power consumption model

2.3.1 Geometric correction of DMSP images

Zhao et al. (2015) discuss the geometric error in DMSP images and describes a geometric

correction method. It is shown in Figure 2.4 that the correlation between F142001 and

5http://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
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F162009 images is higher after shifting the second image one pixel up in vertical direction.

Thus, it is necessary to execute geometric correction before the images intercalibration.

Figure 2.4: Example showing geometric errors in DMSP images. Correlation between

F142001 and F162009 images is higher after shifting F162009 one pixel up in vertical

direction

We use the F142001 image as a reference image since it was arbitrarily selected by

Zhao et al. (2015) to perform the geometric correction for Sicily. We shift each annual

image with 25 different movement combinations (horizontally: left or right, vertically: up

or down) and we calculate the correlation coefficient of DN values between the shifted and

the reference image. The shift gives the highest correlation coefficient when the geographic

positions of the two images are the closest. Table 2.1 exhibits the best movement schemata

of the geometric correction for Sicily (See Appendix A).

Table 2.1: Movement schemata of geometric correction for Sicily.
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2.3.2 Intercalibration of DMSP images

Because the OLS has no on-board calibration; thus, digital number (DN) values are incom-

patible across different years. Elvidge et al. (2000, 2009) propose an empirical procedure

of intercalibration that we apply in the DMSP data set from 1999 to 2010.

Figure 2.5: Intercalibration scattergrams for the geometrically corrected night-time lights

of Sicily.

The F121999 image for Sicily is used as a reference image because it has the largest

range of DN values, a valuable characteristic since it permits a higher accuracy of the

second - order functions Zhao et al. (2015).

Table 2.2: Coefficients of the second order functions for each satellite for intercalibrating

the annual night-time lights products.

We develop a group of second order regression functions by adjusting DN values of
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pixels in Sicily of candidate respective images to the match DN values of pixels in Sicily

in the reference image. Figure 2.5 shows examples of the scattergrams for each year of the

satellite images of Sicily versus F121999 (See Appendix B).

Figure 2.6: The sum of lit cell values before intercalibration for the State of São Paulo.

Then, we apply these functions to the corresponding satellite images to build intercal-

ibrated DMSP images. The coefficients of the second order functions for each satellite is

shown in Table 2.2.

The objective of the intercalibration is to have continuity of the sum of the lights index

values from each year of the time series. One sign of a successful intercalibration is the

convergence of values in years where two satellite products are available (Elvidge et al.

(2000, 2009)).

After intercalibration, pixels with original DN value of zero have nonzero values. To

achieve reliable pixel values, a threshold value is used. Since there is no pixel with DN

value smaller than 3, we use this value as a threshold value assuming that DN values

smaller or equal to 3 have DN value of zero in intercalibrated images.

Table 2.3: Comparison of intercalibration results for the State of São Paulo: Geometric-

ally corrected Elvidge et al. (2000, 2009) method and our approach.



11

Figure 2.7: The sum of lit cell values after intercalibration for the State of São Paulo:

(a) Geometrically corrected Elvidge et al. (2000, 2009) method, (b) Our approach.

The graphs in figures 2.5 and 2.6 display the sum of lit cell values before and after

intercalibration respectively for the state of São Paulo. Table 2.3 compares the results of

the geometrically corrected Elvidge et al. (2000, 2009) intercalibration method and our

approach, concluding that our approach gives better results for the DMSP images of 2000

(F142000, F152000). Thus, we use the intercalibrated images produced from our approach

for the rest of the research method.

2.3.3 Prediction model

We build the prediction model using electricity consumption census data from the site of

the Foundation State System Data Analysis6 agency (SEADE).

SEADE is an agency of the Department of Planning and Regional Development of the

Government of the state of São Paulo providing free access to electricity consumption data

sets. The data sets are classified according to consumer type in public services, industrial,

residential, rural and commercial electricity consumption per municipality.

Before building the prediction model we take a first look at the data for checking the

relation between the DMSP night-time lights and each of the electric power consumption

category (Figure 2.8).

Ploting the sum of lit cell values for each São Paulo municipality against each electricity

consumption census category and applying a linear model, we observe that the category

of public services electric power consumption gives the highest correlation (Cor = 0.74)

and coefficient of determination (R2 = 0.55) with the sum of DMSP cell values (Figure

6http://www.seade.gov.br/
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Figure 2.8: Sum of lit cell values for each São Paulo municipality against public services

electric power consumption.

2.8). This can be explained by the satellite recording of public outdoor lights emissions

(Exterior lighting of streets and buildings) and not indoor lighting.

Observing the cone-shaped plot in Figure 2.8, we assume heteroscedasticity. In statist-

ics, heteroscedasticity is the absence of homoscedasticity and this means the variability of

a variable (Sum of lit cell values) is unequal across the range of values of a second variable

that predicts it (Public services electric power consumption).

We test the heteroscedasticity assumption applying the classical Levene’s test. Levene’s

test evaluates the equality of variances for a variable measured for two or more groups.

It tests the null hypothesis that variances of different samples from the same population

are equal. If the P-value of Levene’s test is less than 0.05 the null hypothesis of equality

is rejected. The resulted P - value for our data is less than 0.05 and equal to 3.263e−6,

concluding that there is a difference between the variances and the data are heteroscedastic.

There are several approaches to deal with heteroscedasticity and the logarithmic trans-

formation is the most common one. We apply the logarithmic transformation in X and Y

axis separately (Figure 2.9) and together (Figure 2.10). The both axis log-transformation

returns the best results with data distribution closest to the normal (Figure 2.10).

The assumption of normality is checked with the graphical methods of quantile-quantile

plot (Q-Q plot), box-plot, residuals plot and skewness measurement before (Skewness(X)

= 7.49, skewness(Y) = 6.57) and after (Skewness(X) = 0.11, skewness(Y) = 0.68) log-

transformation (See Appendix C). The plot in Figure 2.10 represents the data distribution

after the log-transformation and the applied exponential model (R2 = 0.72).
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Figure 2.9: Sum of lit cell values for each São Paulo municipality against public ser-

vices electric power consumption: (a) X axis log-transformation and (b) Y axis log-

transformation.

Figure 2.10: Sum of lit cell values for each São Paulo municipality against public services

electric power consumption: X and Y axes log-transformation.

To improve more the prediction model, the metropolitan area (São Paulo) and the

states on border with it discarded from the data set (Greater São Paulo). These areas are

affected from the saturation effect and considered as outliers because of overestimation of

lit cell values (Amaral et al. (2005)). After discarding the outliers, 602 states left in the

data set out of the total number of 638 states. In Figure 2.11 the red points of the plot are

the excluded values (Outlier states). The exponential model in Figure 2.11 (R2 = 0.79) is

improved from the model in Figure 2.10 (R2 = 0.72) and this is the final prediction model

we use for the rest of this work (y = 1.1406 e0.329x).
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Figure 2.11: Final prediction model: Sum of lit cell values for each São Paulo municipality

against public services electric power consumption (X and Y axes log-transformation).

The saturated areas are excluded (Red points).

2.3.4 Intra-annual composition

The objective of intra-annual composition is to make full use of the information derived

from the two satellites F142000 and F152000. To do this, we based our approach on the

method proposed by Liu et al. (2012). Lit pixels detected by only one satellite are defined

as unstable lit pixels and replaced with zero value. Stable lit pixels are replaced by the

average DN value of them. In this way, one intra-annual composite is produced for 2000

for the Brazilian Amazonia.

DN(2000, i) =

 0 DNF14
(2000,i) = 0|DNF15

(2000,i) = 0

(DNF14
(2000,i) + DNF15

(2000,i))/2 otherwise
(2.1)

Where DNF14
(2000,i) and DNF15

(2000,i) are DN values of the same ith lit pixel from the two

satellite images F14 and F15 of 2000.

2.3.5 Removal of gas flaring lights

We define the cells lighting because of gas flaring overlapping the Brazil Gas Flaring

Shapefile from NOAA7 site. We set the values of these cells equal to the zero value since

these represent neither electric power consumption nor inhabitant areas (Figure 2.12).

7http://ngdc.noaa.gov/eog/interest/gas flares countries shapefiles.html
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Figure 2.12: Intra-annual composite for 2000 (Red circle locate the gas flaring): (a) Cor-

rected DMSP data (b) Corrected DMSP data excluding gas flaring.

2.3.6 Electric power consumption model

We apply the developed exponential prediction model (Figure 2.11) to the calibrated and

gas flaring clean DMSP images F182010 and F14,152000 (Intra-annual composition: 2.3.4

section) of the Brazilian Amazonia area. Then, we transform the predicted DN values to

non logarithmic scale and measure the electric power consumption for 2000 and 2010 in

every state of the Brazilian Amazonia summing the cell values (Figure 2.13).

Figure 2.13: Measured electric power consumption (GWh) for 2000 and 2010 per Brazilian

Amazonia state (Pa = Pará, MT = Mato Grosso, MA = Maranhao, RO = Rodonia, AM

= Amazonas, TO = Tocantins, AC = Acre, AP = Amapa, RR = Roraima).

Census data obtained from the Brazilian Government’s Energy Research Agency8

(EPE) validate the measured results (Figure 2.14). As mentioned in the 2.3.3 section,

the satellite records represent the public outdoor lights emissions (Exterior lighting of

8http://www.epe.gov.br/
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Figure 2.14: Comparing the measured electric power consumption with the census data

(EPE) for 2010 per Brazilian Amazonia (Pa = Pará, MT = Mato Grosso, MA = Maranhao,

RO = Rodonia, AM = Amazonas, TO = Tocantins, AC = Acre, AP = Amapa, RR =

Roraima).

streets and buildings) and not indoor lighting. Thus, we compare the sum of the public

electricity consumption census data categories as these are classified in the EPE annual

report 9 2010: public services, public illuminationn, public power electric power consump-

tion.

At a first glance, there is a difference between the measured results and the census

data. Especially for the Amazonas state where the difference is big. Although the data

are not overlapped, the measured results are valid since there is no direct interpretation

between satellite records and census data records. No direct interpretation means that

part of other electric power consumption categories (Residential, industrial, commercial

and rural) may be included in our results as an extension of the DMSP satellite records.

For instance, outdoor lights of yards, shops and industries is possible to be included in the

DMSP night-time light records.

Regarding the big difference between the measured result and census data of the Amazo-

nas state, we refer that this is the area where we set the gas flaring lit cell values equal

to the zero value. One thought was that the gas flaring light is included into the elec-

trical power consumption census records. However, including the gas flaring lit cells in

our measurement does not improve enough the measured electricity consumption (Fig-

ure 2.15). The state of Amazonas is considered as an outlier. We discuss this in Open

9www.epe.gov.br/AnuarioEstatisticodeEnergiaEletrica/20130909 1.pdf
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Figure 2.15: Comparing the measured electric power consumption with the census data

(EPE) for 2010 per Brazilian Amazonia state, including gas flares (Pa = Pará, MT =

Mato Grosso, MA = Maranhao, RO = Rodonia, AM = Amazonas, TO = Tocantins, AC

= Acre, AP = Amapa, RR = Roraima).

Table 2.4: Percentage change of electricity consumption per state from 2000 to 2010.

suggestions for future research section (Section 3.3).

To explore more the results, we calculate the percentage change of electricity consump-

tion per state from 2000 to 2010 (Table 2.4). The electric power consumption is increasing

in every state. The sates of Acre (109%) and Rodonia (94%) have the largest increase and

state of Tocantins (38%) the lowest.

2.4 Population distribution model

Population estimation methods can be grouped into two categories: areal interpolation

and statistical modelling. Areal interpolation methods can be further separated into two

categories depending on whether ancillary information is used (Wu et al. (2005)).
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We based on the population distribution method proposed by Amaral et al. (2012) to

generate a cellspace (10km x 10km) model of night time urban population distribution.

We investigated the usage of five variables: distance from roads, distance from rivers,

distance from urban nuclei (nearest neighbor distance), percentage of forest cover for

2000, forest height for 2010 and electric power consumption data (Measured from DMSP

night-time images, section 2.3).

2.4.1 Frequency analysis

Location of urban nuclei is assumed to be evidence of human presence Amaral et al.

(2012). Thus, we first identify the relationship between each indicator variable and the

location of urban nuclei. Each variable is studied individually applying a frequency analysis

(See Appendix D). From the frequency analysis of distance between urban centers, it is

observed that 90% of the communities are less than or equal to 25.1 km away from the

nearest neighbor (Figure 2.16(a)). Regarding the electric power consumption for 2000,

50% of the communities consume less or equal to 10 MWh and 90% consume less than or

equal to 43 MWh (Figure 2.16(b)).

Figure 2.16: Frequency analysis: (a) Distance between urban centers and (b) Electric

power consumption for 2000.

2.4.2 Standardisation of values

The scale and range of each indicator variable is different. Thus, before start the operations

between the variables, there is a need for standardisation of values. We standardize the

values applying the quadratic functions Amaral et al. (2012) describe.

Taking the distance between urban centers (z) as an example, the quadratic functions

are as follows:
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F (x) =


0 if 160.59 km

1/(1 + a (z - b)2

1 if z ≤ 1km

(2.2)

The b value corresponds to the value of the variable when the possibility of having

associated population is maximum. The value of alpha (a) corresponds to the value of the

variable where the occurrence or non-occurrence of the population is equal (50%) and is

calculated by the equation:

a =
1

(z − b)
(2.3)

Where z is the value of the variable when F(z) = 0.5. Table 2.5 shows the values of

the indicator variables that are used in the quadratic functions.

Table 2.5: Values of the indicator variables are used in the quadratic functions.
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2.4.3 Population disaggregation in a cell space model

In this section, we discuss the disaggregation of the urban population census data (Source:

IBGE) in a cell space with 10 km cell resolution (Urban population 2000 = 14.366.161 and

urban population 2010 = 18.299.227). To disaggregate population from census data to the

cell space we based on the method proposed by Amaral et al. (2012), but we changed the

used disaggregation equation. Applying the disaggregate equation proposed by Amaral

et al. (2012) in our area and data, it does not work properly.

According to the probability theory we find the probability of dependent events by

multiplying the probabilities of each previous event. Disaggregating population in a cell

space using multiple indicators per cell, the population presence probability of one cell

is affected by all of the indicators. Applying the disaggregation equation (2.4) and con-

sidering indicators as dependent variables, in our research the Fgridi value resulted from

the multiply of F(z) indicator variables and not from the weight average as Amaral et al.

(2012) describe. Pgridi is the population count to be attributed to a grid cell ( i), PCTI
is

the total urban population, FgridI is the sum of all Fgridi and i is a grid cell of the cell

space I.

Pgridi = PCTI
∗
Fgridi

FgridI

(2.4)

Figure 2.17: Population 2000: Comparing disaggregation model data with census data

per Brazilian Amazonia state (Pa = Pará, MT = Mato Grosso, MA = Maranhao, RO =

Rodonia, AM = Amazonas, TO = Tocantins, AC = Acre, AP = Amapa, RR = Roraima).

Importing the indicator variables in TerraView GIS system and using the plug-in Fill

cell, each cell is filled with one value for each indicator variable. We process the data
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Figure 2.18: Population model 2010: Comparing disaggregation model data with census

data per Brazilian Amazonia state (Pa = Pará, MT = Mato Grosso, MA = Maranhao,

RO = Rodonia, AM = Amazonas, TO = Tocantins, AC = Acre, AP = Amapa, RR =

Roraima).

using the Lua programming language and test different combinations of indicators to

disaggregate the urban population into the cell space.

Figure 2.19: Population cell model 2000 in TerraView.

Also, we tested the approach of excluding cells characterised as river area (Ancillary

information) considering that population presence is not occurring in water areas. Each

combination disaggregation is validated by measuring the disaggregated population in

every state and comparing with census data respectively. DMSP satellites are capable

to record urban centers with population higher than 400.000 inhabitants (Amaral et al.

(2012)). Thus, we disaggregate the urban and not the total population which probably
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Figure 2.20: Population cell model 2010 in TerraView.

includes number of people inhabit in villages and other smaller areas.

The two variables of electric power consumption and distance from urban nuclei (nearest

neighbor distance) return the best tested population disaggregation result (Figures 2.17,

2.18). The water areas are included to the final model. The resolution is low (10km x

10km) and excluding the water area cells we possibly lose a big part of the populated area.

The two column plots in Figures 2.17 and 2.18 compare the model result with census

data. Observing the plots, the model does not work well for the two states of Tocantins

and Amazonas, but it returns good results for seven out of nine states. This is the best

achieved model and is the one we use to develop the electric power consumption per capita

model in section 2.5.

After applying the desaggregation method as it is described in the previous section

the two population distribution models for 2000 and 2010 are developed and visualized in

TerreView GIS system with a cell space resolution 10 km (Figures 2.19, 2.20).

Observing the two population models we take a general view of the population change

and point out the places with less or more change from 2000 to 2010. Population tends to

gather at the district seats with a higher concentration towards big city centers.

2.5 Electric power consumption per capita model

After the development of the population model, each cell of the cell space includes values

of electrical power consumption and population for 2000 and 2010.

We develop two electric power consumption per capita cell space models for 2000 and

2010 respectively. In the same way as in population developing model, we use the Lua
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script language to process the cell values. Dividing the electric power consumption value

with the population value of each cell we fill each cell with the new value of the electrical

power consumption per capita.

Two models are generated for 2000 and 2010 respectively with the same cell resolution

(10 km) as the population distribution model. The two models are visualised in Figures

2.21, 2.22. As it was expected cells with zero electrical power consumption value have also

zero electrical power consumption per capita (Figures 2.21, 2.22: Black area).

Figure 2.21: Electric power consumption (kWh) per capita cell model 2000 in TerraView.

Figure 2.22: Electric power consumption (kWh) per capita cell model 2010 in TerraView.
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Chapter 3

Discussion and conclusion

3.1 General discussion

In this section, we point out and discuss the most important parts of the applied research

method and relate these with previous works.

The usage of clean and intercalibrated DMSP images is an important part of this

research. The raw DMSP images from NOAA site are already cleaned from ephemeral

lights, but gas flaring lights should also be removed. Also, the intercalibration of the

satellite images is a crucial step. Elvidge et al. (2000, 2009) in previous researches describe

an intercalibration method of DMSP images. Zhao et al. (2015) in a new research paper

expand Elvidge et al. (2000, 2009) method mentioning and suggesting the geometrical

correction of DMSP images. In this research, the geometric correction takes first place

and then the intercalibration method of Elvidge et al. (2000, 2009). This gives better

result for the satellite images of our interest F142000 and F152000 (Figure 2.7).

Amaral et al. (2005) investigating the state of Pará, conclude that there is a linear re-

lation between DMSP and electric power consumption. We improve Amaral et al. (2005)

model for the state of São Paulo (Figure 2.8) by dealing with the heteroscedastic distri-

bution of the data. An exponential model is developed (Figure 2.11) and applied to the

Brazilian Amazonia area to develop an electric power consumption prediction model.

Amaral et al. (2012) develop a population distribution method for the municipality

of Marabà and apply this to the Sustainable Forest District of BR-163 municipalities of

Brazil. Adapting this method to the Brazilian Amazonia area the model does not work

properly for the Brazilian Amazonia, a bigger area with different natural and social char-

acteristics. Following the Amaral et al. (2012) method, but changing the disaggregation

equation based on the probability theory for dependent events and using just the two
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indicator variables of electric power consumption and distance from urban nuclei, the

population model works properly for the seven out of nine states.

3.2 Conclusion and answer of the research question

The study is applied to the Brazilian Amazonia for the decade 2000 to 2010 and re-

search whether the information deriving from the Defence Meteorological Satellite Pro-

gram (DMSP) can be used to estimate the improvement in quality of life through electric

power consumption.

The resulted plot in Figure 2.14 represents that the electricity values measured using

DMSP images are close to the census data. This plot gives positive answer to the research

question. The applied method suggests it is possible to use the DMSP nighttime lights to

measure the public electric power consumption.

However, as it is referred in section 2.3.6, since there is not direct interpretation between

satellite records and census data records, outliers may occur like the state of Amazonas in

our research area.

As it is referred in the beginning of this work access to electricity is related to the issue

of well-being. Lack of or low access to modern energy services drives to energy poverty

and electric power consumption per capita is an indicator for measuring this. According

to the World Bank1 the richest country in electric power consumption is Iceland in 2000

(26.202 kWh per capita) and 2010 (51.440 kWh per capita). The poorest in electricity are

Ethiopia in 2000 (23 kWh per capita) and Haiti in 2010 (25 kWh per capita).

Comparing the developed models of electric power consumption per capita for 2000

and 2010 we get the information that in general the electrical consumption per capita is

increasing in this decade. The cell values of the two models (2000 and 2010) are easily

accessible through TerraView interface making it easy to compare smaller areas up to 100

km2 (10km x 10km). Also, cell space models offer advantages over areal unit representation

(Coropleth mapping) (Mennis (2003)). Cell models can have higher resolution and are not

affected from geopolitical boundary changes.

The cell values can be extracted and stored as a csv or shapefile format for further

calculations or processed with Lua script language. Analysing further these data we can

point out the poorest and richest in electricity per capita areas and areas with or without

increase in the decade 2000 to 2010. In this way we have a higher resolution of the problem

and our intervention will be more effective.

1http://www.worldbank.org/
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3.3 Open suggestions for future research

As it is referred in the previous section the state of Amazonas is an outlier (Figure 2.14).

The capital city of Manaus, the most populous city in the Brazilian Amazonia, may be

affected by the saturation effect with an impact to the results. Manaus is in the state of

Amazonas and we could try excluding the census electricity data from this area.

Overall, it is possible to improve the results precision by cleaning the DMSP nighttime

light images from the saturation and blooming effect. Blooming is caused due to surface

reflection and saturation due to the accumulated light of big city centers. The effect of

blooming may overestimate the spatial extent of electric power consumption and the effect

of saturation overastimate the DN cell value. A low light threshold of detection frequency

can be used to reduce the overestimated spatial extent of light area. However, applying

a single threshold attenuates large numbers of smaller lights and significantly reduces the

information content of the night lights data sets (Small et al. (2005)). For this reason no

single brightness threshold is valid for all light images (Ma et al. (2012)).

The electrical power consumption per capita cell model can also be improved using the

dasymetric method. The dasymetric method is an areal interpolation method which uses

available ancillary data to provide further insight into the probable population distribu-

tion. The dasymetric method commonly regarded as the most accurate approach of all

population estimation methods (Wu et al. (2005)). The waterlands (e.g., lakes, rivers) can

be identified waterlands (e.g., lakes, rivers) using land cover data and characterise these

as unpopulated areas (Amaral et al. (2012).

Before using the dasymetric method we should take under consideration the cell space

resolution of the model. The cell resolution should be less than 10 km (Current research

method resolution) since a coarse resolution excludes inhabited areas and affects the pop-

ulation distribution model. The resolution can be improved to 1 km (Resolution of DMSP

satellite images) using an upgraded hardware system.
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Appendix A

Movement schemata of geometric

correction for Sicily
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Appendix B

Intercalibration scattergrams

(Geometrically corrected Sicily)
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Appendix C

Testing data normality

Figure C.1: Quantile-Quantile plot: (a) Raw Y and (b) Raw X.

Figure C.2: Quantile-Quantile plot: (a) Log Y and (b) Log X.
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Figure C.3: Quantile-Quantile plot: (a) Raw X, Log Y and (b) Log X, Row Y.

Figure C.4: Quantile-Quantile plot: (a) Log X, Raw Y and (b) Raw X, Log Y.

Figure C.5: Box plot: (a) Before log-transformation (b) After log-transformation of X

and Y axes.
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Figure C.6: Residuals: (a) Against fitted values (b) Against logarithmic electric power

consumption data.
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Appendix D

Frequency analysis and

standardisation of values

Figure D.1: Urban nuclei distance from rivers (a) Accumulated frequency and (b) Stand-

ardized values.
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Figure D.2: Urban nuclei distance from road network (a) Accumulated frequency and

(b) Standardized values.

Figure D.3: Urban nuclei distance from nearest neighbour (a) Accumulated frequency

and (b) Standardized values.

Figure D.4: Urban nuclei and forest cover 2000 (a) Accumulated frequency and (b)

Standardized values.
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Figure D.5: Urban nuclei and forest height 2010 (a) Accumulated frequency and (b)

Standardized values.

Figure D.6: Urban nuclei and electric power consumption 2000 (a) Accumulated fre-

quency and (b) Standardized values.

Figure D.7: Urban nuclei and electric power consumption 2010 (a) Accumulated fre-

quency and (b) Standardized values.
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