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Abstract

The Brazilian Amazon rain forest is the world’s largest tropical forest and

one of the places with the highest biodiversity on Earth. Since the 1970s, large

forest areas have been removed, resulting in cutting about 18 % of the orig-

inal forest. Understanding the causes of deforestation is necessary to set up

adequate public policies to control this process. However, since the Brazil-

ian Amazon forest occupies an area larger than Europe, there are significant

regional differences in the causes of forest removal.

In order to better understand theses causes, this study investigates how

much statistical models of deforestation can be improved by subdividing the

study area into subregions (regionalisation).

Various sets of subregions are created using a graph-based regionalisa-

tion algorithm. Multiple linear regression models are fitted to all subregions.

The performance of the regionalisation is evaluated using an error measure

and compared to the results of fitting a single model to the entire study area.

Results show that in general the predictions are improved by applying re-

gionalisation. Subdividing into 9 regions improves more than subdividing

into 3 regions. The best results are obtained by regionalisation using defor-

estation or land cover attributes. Care must be taken when using subregions

in predicting deforestation for different points in time than the one for which

the models were fitted.

i



Contents

1 Introduction 1

2 Methodology 5

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Study area and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Protected and indigenous areas (2 variables) . . . . . . . . . 8

2.2.2 Farm size percentages (4 variables) . . . . . . . . . . . . . . . 8

2.2.3 Transport costs (2 variables) . . . . . . . . . . . . . . . . . . . 8

2.2.4 Agricultural attributes (3 variables) . . . . . . . . . . . . . . 9

2.2.5 MODIS land cover (6 variables) . . . . . . . . . . . . . . . . . 9

2.2.6 PRODES land cover (3 variables) . . . . . . . . . . . . . . . . 11

2.2.7 TerraClass land cover (8 variables) . . . . . . . . . . . . . . . 11

2.3 The statistical model used in this study . . . . . . . . . . . . . . . . 12

2.4 Evaluation metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Regionalisation: Dividing space into subregions . . . . . . . . . . . 16

2.5.1 Overview of regionalisation techniques . . . . . . . . . . . . 16

2.5.2 The SKATER algorithm . . . . . . . . . . . . . . . . . . . . . 17

2.5.3 Advantages and disadvantages of the SKATER algorithm . 18

3 Results 20

3.1 Partitions that were created and compared . . . . . . . . . . . . . . 20

3.1.1 Spatial meaningful partitions . . . . . . . . . . . . . . . . . . 21

3.1.2 Spatial random partitions . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Non-spatial subsets . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Comparison scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Performance of the partitions under scenarios A and B (modelling

for understanding the status quo) . . . . . . . . . . . . . . . . . . . . 24

3.4 Performance of the partitions under scenarios C (modelling for es-

timating future deforestation) . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Ranking of the partitions in various scenarios . . . . . . . . . . . . . 29

4 Discussion 36

4.1 General discussion of the effects of regionalisation . . . . . . . . . . 36

4.2 Discussion of the best partitions and comparison with reference

partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ii



4.2.1 Why does the partition by the explanatory variables not

perform so well? . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Why does the partition by the agricultural variables not

perform so well? . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.3 The partitions into 9 regions . . . . . . . . . . . . . . . . . . . 41

4.2.4 Comparison with the Becker regions and the federal states . 41

4.3 Discussion of the findings from scenario C . . . . . . . . . . . . . . 42

5 Conclusions and further work 49

A Graphics of the errors of all partitions in the scenarios A, B, C1 and C2,

and maps of land cover variables used for regionalisation 56

iii



List of Tables

1 The explanatory variables used for statistical modelling. . . . . . . 7

2 The aggregation of the IGBP global vegetation classification classes

used in MODIS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Overview over the 66 partitions . . . . . . . . . . . . . . . . . . . . . 23

4 Amounts of accumulated deforested area in 2002 and 2012, esti-

mated and real. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Best partitions in all scenarios . . . . . . . . . . . . . . . . . . . . . . 30

iv



List of Figures

1 Map of accumulated deforestation in the Amazon area. . . . . . . . 3

2 Rates of deforestation in the Brazilian Amazon rain forest from

1998-2012, broken down by state. . . . . . . . . . . . . . . . . . . . . 3

3 The study area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 The variable selection process. . . . . . . . . . . . . . . . . . . . . . . 13

5 The effect of subsetting on the R2 . . . . . . . . . . . . . . . . . . . . 15

6 The chaining effect in the SKATER algorithm . . . . . . . . . . . . . 18

7 Contiguity definition in the SKATER algorithm . . . . . . . . . . . . 19

8 The partition proposed by Becker (source: [5], adapted). . . . . . . . 20

9 Comparison of the adjusted R2 and the overall error in 2002 . . . . 25

10 Boxplots of the error depending on the number of regions of the

partitions in 2002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

11 Boxplots of the error depending on the randomness of the parti-

tions in 2002. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

12 Boxplots of the error depending on the number of regions and the

randomness of the partitions in 2002. . . . . . . . . . . . . . . . . . . 27

13 The misestimation of the overall deforestation sum in the different

partitions and in the individual subregions . . . . . . . . . . . . . . 29

14 Visualisation of the eight rankings. . . . . . . . . . . . . . . . . . . . 31

15 Visualisation of the eight rankings by the partitions’ performances

relative to the undivided study area. . . . . . . . . . . . . . . . . . . 33

16 Visualisation of the eight rankings, sorted by the performance in

scenarios A and B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

17 Rankings of the partitions into 3 regions in scenarios C1 and C2 . . 35

18 Rankings of the partitions into 9 regions in scenarios C1 and C2 . . 35

19 The accumulated deforested area and the deforestation rates in

2002 and 2012 (source INPE/PRODES). . . . . . . . . . . . . . . . . 38

20 The eight best partitions into 3 regions for scenarios A and B. . . . . 39

21 The partition created by all explanatory variables and the two ex-

planatory variables that contributed mostly to this spatial pattern:

Indigenous areas and the percentages of farms in size class 0 to 0.2

ha. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

22 The partition created by using the attributes planted corn and soy

area and number of cattle in the years 2002-2012. . . . . . . . . . . . 45

23 The variables corn, soy, cattle in 2002 and 2012. . . . . . . . . . . . . 46

v



24 The eight best partitions into 9 regions for scenarios A and B . . . . 47

25 The federal states of Brazil overlapping the study area. . . . . . . . 48

26 The errors of all partitions in 2002 (scenario A) . . . . . . . . . . . . 57

27 The errors of all partitions in 2012 (scenario B) . . . . . . . . . . . . 58

28 The errors of all partitions for predicting 2012 based on models

fitted to 2002 (scenario C1) . . . . . . . . . . . . . . . . . . . . . . . . 59

29 The errors of all partitions for predicting 2012 based on models

fitted to 2002, using a correction factor by region (scenario C2) . . . 60

30 The deviations of the predicted deforestation amounts from the

real values for 2012 for all the partitions. . . . . . . . . . . . . . . . . 61

31 Examples for the MODIS land cover data used for partitioning the

study area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

32 The TerraClass land cover data used for partitioning the study area

(source: INPE, adapted). . . . . . . . . . . . . . . . . . . . . . . . . . 63

vi



Chapter 1: Introduction

1 Introduction

The Brazilian Amazonia rain forest covers an area of 4 million km2 [13]. This

large area of pristine rainforest has high biodiversity [7] and provides important

ecosystem services. At the same time, there is a high pressure on this region.

Brazil’s rising economy and increasing population [4] leads to a higher demand

of land for economic use. During the last decades, close to 740.000 km2 have been

deforested [19].

Obviously, there is a conflict between environmental preservation and eco-

nomic development. In order to reconcile these two important things, good pub-

lic policies and informed decision-making is crucial. Good decision-making de-

pends on good data and careful analysis.

It is important to know which driving factors drive the deforestation. For this

aim, much research has on the dynamics and the drivers of deforestation has been

done. Many studies rely on statistical analysis for analysing the driving factors

of deforestation. They have related deforestation to various variables that are as-

sumed to represent drivers of change. Most statistical analysis of deforestation

[1, 22, 3, 32, 28, 26, 33] take accumulated deforestation as the dependent vari-

able, and use data derived from census as the independent variables. These inde-

pendent variables include, for example, production of agricultural commodities,

cattle raising activities, number of settlements, transportation costs, land tenure,

fertility and protected areas.

It is important to distinguish between proximate causes and underlying driving

forces [24]. Proximate causes are those associated to an individual’s decision to

transform the land cover, which include pasture expansion for cattle production,

large-scale agriculture, timber industry and smallholder settlements. The under-

lying forces are those factors that work at a larger scale, such as demographic and

technological change, global trade and policy and institutional factors. When do-

ing a statistical analysis of causes of deforestation, it is usually the case that one

has data that comes from remote sensing images or from census data collection.

Such data are mostly related to proximate factors. As a result, there is an limited

explanatory power related to statistical analysis, in that we may be able to study

the proximate causes and it is much harder to represent the underlying factors.

In her paper ”Geopolı́tica da Amazônia” [5], the geographer Becker draws a

more comprehensive picture of the role of the Amazon area. She explains the dy-

namics of the Amazon region in a geopolitical context and emphasizes the role of

political and societal actors. For a long time, the Amazon was seen as a large area
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Chapter 1: Introduction

that needs to be occupied in order to ensure national territorial integrity. Nowa-

days, international actors such as market pressures and environmental preserva-

tion organisations have increased their influence on what is happening locally.

Becker underlines the role of market pressures and the global interests at stake

in the Amazon as a consequence of the globalisation of the economy, but also

in the light of the trend towards mercantilisation of nature, shown e.g. by the

Kyoto protocol and attempts of commercialising biodiversity and water. She em-

phasizes the importance of the different actors and the ability and potential of

political and local actors to restrict the free reign of market forces in the area, to

counter the influence of actors such as agribusiness companies, which have had

a big influence in the recent decades.

A large part of the history of land use change in the Amazon area is related

to agricultural expansion, carried out by different types of actors, which have

different effects [31]. From 1990 to 2005, 110,000 km2 were deforested in Mato

Grosso state in the southern part of Amazonia. Such deforestation was associ-

ated to a large migration from farmers from the South of Brazil. This resulted in

a large expansion of the soy production area and contributed to Brazil’s exports.

In 2008, Brazil produced 58 million tons of soybeans. Mato Grosso accounted for

15 million tons (25% of total). The other states in Amazonia have no significant

contribution to the production of grains [27]. Soy and corn expansion of pro-

duction in Amazonia has slowed down since 2000. Several reasons for this are

identified: (a) decreased migration from the South; (b) emphasis on productivity

improvements instead of area expansion; (c) newly available areas have worse

connection to markets and unfavorable soil conditions; (d) external market pres-

sures for avoiding further deforestation. From 1970 to 1980, Mato Grosso’s pop-

ulation almost doubled from approximately 600,000 to 1,130,000 people. From

1980 to 1990, it increased to 2,000,000 people. Growth was smaller in the next

decade, reaching 2,500,000 people in 2000. Less migrants means less pressure for

new land. Furthermore, Greenpeace and ABIOVE (Brazilian Association for Veg-

etable Oil) have signed an agreement in 2006 (the Soy Moratorium), where the

soybeans exporters have declared that they would not carry out any more defor-

estation. The Soy Moratorium has been renewed yearly since 2006. Soy and corn

production account for about 5% of the total deforestation in Amazonia [19].

Deforestation data from the Instituto Nacional de Pesquisa Espacial (INPE, the

Brazilian National Space Research Institute), broken down by state, is shown in

figure 2. It shows that most of the forest being cleared since 2006 is located in the

state of Pará, whose rural economy is largely based on cattle raising and intensive

2



Chapter 1: Introduction

logging [6, 31]. These activities are unsustainable. Recent research showed that

relative standards of living, literacy and life expectancy increase as deforestation

begins but then decline as the frontier evolves [34].

Figure 1: Map of accumulated deforestation in the Amazon area. Remaining

forest is shown as green, deforestation in shades of yellow to red, savanna in ma-

genta, clouds in blue. The highlighted areas are Pará (in the north; cattle, timber

and settlements), Rondônia (southwest; cattle and settlements) and Mato Grosso

(southeast; large soybeans production) (source: PRODES/INPE, adapted).

Figure 2: Rates of deforestation in the Brazilian Amazon rain forest from 1998-

2012, broken down by state (source: PRODES/INPE).

The three main areas of occupation in Amazonia are the states of Pará, Rondônia,

and Mato Grosso, shown on figure 1. In each state, there are different dominant

driving forces for deforestation. In Mato Grosso, deforestation is associated to

grains and cattle raising. In Pará, expansions combine farms for cattle, illegal

timber extraction, and land speculation. In Rondônia, cattle raising is combined

with small-scale settlements. Thus, in each of the states where there has been

most deforestation, the causes are different [27, 6, 31].

3



Chapter 1: Introduction

Those studies show that deforestation is a highly spatially heterogeneous pro-

cess that calls for analyzing the regions separately. For this reason, [35] acknowl-

edges this and splits the entire Amazon basin into 47 subregions, using different

cellular automata model for a deforestation forecast 2050. In [1], three subregions

are used, which were introduced by Becker [5]. She identifies three macroregions:

The Consolidated Arch (Arco de povoamento con-solidado), Central Amazonia and

Occidental Amazonia. The Arch includes areas from northeastern Amazonia

(Belém, Pará, Maranhão) over the eastern and southeastern area and includes the

southern border of the Amazon rainforest until Mato Grosso and Rondónia. It is

the more urban area, with cities, population and infrastructure well established.

Occidental Amazonia is the most preserved, with its population concentrated in

Manaus. Central Amazonia is assumed to be the most vulnerable area. Infras-

tructures axes cut across it and the most recent deforestation frontiers are located

here.

In [1], these regions are used for fitting separate statistical models. They find

different driving factors to be important in the various subregions. For example,

protected areas are more relevant in the Arch than in Central Amazonia, while

not showing a significant effect in Occidental Amazonia. From this, they deduce

recommendations on localisations of potential protected areas.

This work shows the usefulness of subdividing the Brazilian Amazon rainfor-

est, which occupies an area larger than Europe. However, the regions proposed

by Becker have not been evaluated or compared against other regionalisations. In

[1]’s work, the models fitted to the subregions show that different driving forces

are dominant in the various areas, but it is not clear by how much the explana-

tion of the spatial pattern of deforestation improved by these subregions. Thus,

two questions arise: Does the explanation of deforestation improve by regional-

isation, and how much? And is there regionalisations that do so more than the

ones proposed by Becker?

Those two questions are addressed in this work. We propose to evaluate the

usefulness of subdividing the space into federal states, into the regions proposed

by Becker, in statistical deforestation modelling. We aim to find out whether other

regionalisations perform better, and find out by how much the regionalization

improves the goodness of fit. We will do this by creating regionalizations in an

objective way based on various attributes known to be related to land change in

Amazonia and evaluating their quality using linear statistical models of defor-

estation.
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Chapter 2: Methodology

2 Methodology

2.1 Overview

The objective of this study is to evaluate the influence of regionalisation on the

result of statistical deforestation modelling. For this, various subdivisions of the

study area into regions are compared.

To evaluate how much regionalisation improves the results of deforestation

models, the following steps are carried out repeatedly. The study area is split into

subregions. A statistical model is fitted to each subregion. Using these models,

the deforestation is predicted for each subregion separately. The combined pre-

dictions of a set of subregions are compared to the real deforestation, measured

by satellite imagery.

In the following, we call a combination of subregions that cover the whole

study area a partition. 66 partitions were created. They were compared among

each other and to the deforestation predicted by applying a model to the entire

study area.

This section is structured as follows. First, the study area, its representation in

a spatial database and the spatial data used for regionalising and for deforesta-

tion modelling are described (section 2.2). The statistical model itself is described

in section 2.3 and the metric used for evaluating the models is introduced in sec-

tion 2.4. The regionalisation algorithm that is used for creating the partitions is

introduced in section 2.5.

2.2 Study area and data

The study is applied to the Brazilian part of the Amazon rainforest, called the

Amazon Rainforest Biome. This is a part of the Brazilian administrative region

Legal Amazon. Approximately 20 % of the Legal Amazon area is covered by

other ecosystems, mainly by the Cerrado, a savannah ecosystem, and by a small

part of the Pantanal, a wetlands area (see fig. 3). The PRODES dataset 2.2.6,

which is used as reference in this study, does not map deforestation in these areas,

so the regression model would be biased by including these areas in the study.

The reason to restrict the study to the Brazilian part of the Amazonian rainforest,

ignoring the neighbouring countries, is the availability and homogeneity of data

in Brazil.

The Rainforest biome has an area of approximately 4,196,943 km2 and covers

approximately 49.29 % of the Brazilian national territory [13]. The source of the
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Chapter 2: Methodology

Figure 3: The biomes of Brazil (grey areas, AMZ = Amazon rainforest, CER = Cer-

rado, CAAT = Caatinga, PTN = Pantanal, MAT = Mata Atlântica, PMP = Pampa)

and the Legal Amazon area (thick black line). In this study, only the Amazon

rainforest biome, painted in dark grey, is used ( source: IBGE, adapted).

6



Chapter 2: Methodology

spatial data on biomes and the Legal Amazon is the Brazilian Institute of Geog-

raphy and Statistics (Instituto Brasileiro de Geografia e Estatı́stica, IBGE).

The study area is divided into 6836 grid cells of 25 by 25 km containing all

the variables used for modelling and for regionalisation. To make sure that all

of them have the same area, all the data was reprojected to an equal-area Albers

Conic projection centered on the study area. 28 variables are used for statistical

modelling and/or regionalisation. 14 of them are available for each year dur-

ing the studied period (2002-2012), 14 were only available for single years. The

variables that were used for the statistical models are listed in tab. 1.

Potential explanatory variable Year Source

1 percentage of farms 0-0.2 ha

2006 IBGE (Census)

2 Percentage of farms 0-0.2 ha (log)

3 Percentage of farms 0.2 - 5 ha

4 Percentage of farms 0.2 - 5 ha (log)

5 Percentage of farms 5 - 500 ha

6 Percentage of farms 5 - 500 ha (log)

7 Percentage of farms >500 ha

8 Percentage of farms >500 ha (log)

9 Number of heads of cattle
Yearly IBGE (PPM survey)

10 Number of heads of cattle (log)

11 Area planted with corn

Yearly IBGE (PAM survey)
12 Area planted with corn (log)

13 Area planted with soy

14 Area planted with soy (log)

15 Percentage of indigenous area
Yearly FUNAI

16 Percentage of indigenous area (log)

17 Percentage of proctected area
Yearly MMA

18 Percentage of proctected area (log)

19 Transport cost to state capitals

2008 PNLT/INPE
20 Transport cost to state capitals (log)

21 Transport cost to export ports

22 Transport cost to export ports (log)

Table 1: The explanatory variables used for statistical modelling.

In the following, a short description of each used variable is given. The scripts

used to create the database and the resulting grid cells are available on the at-
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Chapter 2: Methodology

tached DVD.

2.2.1 Protected and indigenous areas (2 variables)

These attributes indicate how much of the cell is covered by protected respec-

tively indigenous areas in a specific year. The range is from 0 to 1. The data is

freely available from the Brazilian Ministry of Environment (Ministério do Meio

Ambiente) [21] and the Brazilian National Indian Foundation (Fundação Nacional

do Índio) [20] as polygon data, from which the fractions per cell were computed

for each year.

2.2.2 Farm size percentages (4 variables)

The farm size variables indicate how much of the farm area falls into each of four

farm size classes (0 to >0.2 ha, 0.2 to >5 ha, 5 to >500 ha, 500 ha and above). The

values are percentage of the overall farm area, so the values of the four farm size

attributes add up to 100. The data is available by municipality. Each grid cells

inside a municipality gets the same value. For grid cells that are shared between

several municipalities, a weighted average between the values of the participat-

ing municipalities was computed. The data is based on a agricultural census in

the year 2006 and freely available from the Brazilian Institute of Geography and

Statistics (Instituto Brasileiro de Geografia e Estatı́stica, IBGE) [10].

2.2.3 Transport costs (2 variables)

The transport cost was computed for each cell by an algorithm developed by

INPE. There are two types of transport costs: (a) The cost to the closest export

port, and (b) the cost to the capital of the state. Both attributes are in Brazil-

ian Reais (BR$). The costs were determined by assigning different per-kilometre

costs to the different types of roads in the network and computing the cumula-

tive cost until reaching the nearest export port or state capital. The cost of the

distance from each grid cell’s centroid to the closest road is twice as high as the

highest road cost to symbolize off-road transport. Due to connectivity problems

after cartographic reprojection of the input data, four grid cells received exagger-

atedly high costs. They were assigned their neighbour cell’s cost values manually.

The underlying data about the transport network is from the Brazilian National

Transports and Logistics Plan (Plano Nacional de Transporte e Logı́stica) from 2008

as was provided by INPE.

8
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2.2.4 Agricultural attributes (3 variables)

These attributes indicate how much area inside a grid cell is used for corn and soy

culture (in ha) and how many bovines (cattle) are present (number of heads). The

area of planted corn and soy and the cattle numbers are available by municipality

from IBGE. Cattle data is from the Produção da Pecuária Municipal (PPM) [15] and

plant data from the Produção Agrı́cola Municipal (PAM) [14], which are a yearly

agricultural samples. The data is freely available from IBGE [11][12].

To downscale the municipality-level values to the individual grid cells, in-

formation from satellite-based land cover data (MODIS land cover, see section

2.2.5) and information on protected and indigenous areas was used. The planted

area was assumed to be homogeneously distributed over all the area classified

as ”croplands” in a municipality, excluding the area that falls into indigenous or

protected areas. The cattle was assumed to be homogeneously distributed over

all the area classified as ”pasture” or ”natural pasture” in a municipality, also ex-

cluding protected and indigenous areas. The data by municipality was available

yearly. The distribution was carried out for each year using yearly land cover

data and the yearly indigenous and protected areas.

2.2.5 MODIS land cover (6 variables)

For each grid cell, the percentage of the area covered by croplands, pasture, forest,

natural pasture, water and other land cover was computed from yearly MODIS

satellite-based land cover data. MODIS (Moderate Resolution Imaging Spectro-

radiometer) is an instrument for satellite-based land cover imaging on board of

several satellites of the US National Aeronautics and Space Administration (NASA),

from which various land cover datasets are derived. The MODIS data used in

this study is the MODIS Land Cover Type product (MCD12Q1, [29]) which is a

yearly land cover mapping with the resolution of 500 m. The data uses the land

cover classes of the International Geosphere-Biosphere Programme (IGBP) global

vegetation classification scheme. We aggregate them according to our necessity

according to tab. 2. The MODIS land cover variables were used for the regional-

isation (not for the statistical models). Their values range from 0 to 100 and add

up to 100 in each grid cell. The MODIS imagery used in this study was provided

by INPE as a mosaic covering the whole country.
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Aggregated land cover classes Original MODIS land cover classes

Forest

Evergreen needleleaf forest

Evergreen broadleaf forest

Deciduous needleleaf forest

Deciduous broadleaf forest

Mixed forest

Croplands
Croplands

Cropland/natural vegetation mosaic

Pasture
Grasslands

Permanent wetlands

Natural

pasture

Closed shrublands

Open shrublands

Woody savannas

Savannas

Barren or sparsely vegetated

Urban and built-up Urban and built-up

Water and

remaining

Water

Snow and ice

(Unclassified)

(Fill Value)

Table 2: The aggregation of the IGBP global vegetation classification classes used

in MODIS. Not all of the classes in the right column neccessarily exist in the study

area, e.g. snow and ice. The class Permanent wetlands was included in the aggre-

gated class Pasture to cover the Pantanal region before that biome was excluded

from the analysis.

10
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2.2.6 PRODES land cover (3 variables)

The PRODES dataset [16] provides yearly mapping of deforested areas. For sta-

tistical modelling, the accumulated deforested area for each year between 2002

and 2012 is used. In regionalisation, the yearly deforestation rates are used, too.

The rates are the areas that are deforested in a specific year. Furthermore, we

use the accumulated deforestation divided by the area considered suitable for

forest. Area suitable for forested is the whole cell area except the area classified

as non-forest, water and cloud by PRODES. This removes the bias introduced by

low deforestation values in grid cells that mainly consist of water or savannah

vegetation. The PRODES data is freely available from INPE [18].

2.2.7 TerraClass land cover (8 variables)

The TerraClass land cover dataset for the year 2010 provides information about

the land cover in the areas classified as deforested in the PRODES dataset. In

PRODES, areas that are once mapped as deforested are not re-analyzed in sub-

sequent years. Thus, PRODES cannot capture reforestation or secondary vegeta-

tion. The TerraClass project was created to analyse the land use of deforested areas

after deforestation. It considers the areas classified as deforested in the PRODES

dataset and assigns them one of the classes secondary vegetation, reforested, agri-

culture (distinguishing between annual and permanent agriculture and oil palm

culture), pasture (distinguishing between various degrees of degradation), urban,

mining and non-forest [19]. Secondary vegetation encompasses regenerated tree

and shrub vegetation after a human induced removal (clear-cut) of the original

forest. Small patches of secondary vegetation after selective logging activities are

not mapped, as they are considered forest by PRODES and thus excluded from

TerraClass mapping. Reforested areas are areas that underwent planting of tree

species for commercial exploitation.

In this study, eight aggregated classes were used for regionalisation: Annual

agriculture, permanent agriculture, secondary vegetation, non-forest, forest in-

cluding reforested areas, pasture, other land cover (including urban areas, wa-

ter and mining) and outside study area (including non-observed areas and cloud

cover). Areas classified as ”agropecuária” (agriculture) were included in the class

Permanent agriculture. The TerraClass 2010 data is freely available from INPE

([17]). The mosaic of the entire study region used in this study was provided

by INPE.
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2.3 The statistical model used in this study

The objective of this study is to evaluate whether and how much subdividing the

study area improves deforestation modelling by linear regression models. In this

section we present the details of the multiple regression models that were used.

Regression models have been used in various studies to relate the deforesta-

tion in the Brazilian Amazon basin to spatial variables that are assumed to repre-

sent the underlying drivers of change (proxies).

In land change modelling, we are more interested in finding out what drives

the changes in land use/cover than in explaining a static pattern. Thus, it would

make sense to select the change in forest cover during a specific period as the re-

sponse variable and model its dependence on some explanatory variables. This

way, the different drivers of change that are relevant during a specific time period

could directly be identified. However, during short time periods, only relatively

little area is deforested. Even though a large area may have a potential for defor-

estation, the demand for deforestation may not be that high during that limited

time period, so much of the area with a large potential is not deforested inside the

time period. By modelling the accumulated deforestation, the correlation with

the driving factors is much clearer, as a larger fraction of the area with high po-

tential for deforestation is actually deforested. Thus, we select the accumulated

deforested area (available in the PRODES dataset) as the response variable.

The explanatory variables of a deforestation model are variables that are as-

sumed to be proxies for deforestation drivers. They do not drive deforestation

themselves, but they represent underlying drivers of deforestation. In this study,

data on farm sizes (4 variables), transport costs (2 variables), protected and in-

digenous areas (2 variables), number of cattle and planted area of soy and corn

(3 variables) are potential explanatory variables (see tab. 1). Variables that are

strongly interdependent with the response variable, such as land cover attributes

derived from satellite imagery, are not considered for explanatory variables.

Not all of the proxy variables necessarily have a high correlation with the

accumulated deforestation in the whole study area. As we are fitting models

to different subregions of the study area, different driving forces may be more or

less important. Which of the above-mentioned proxies are applied as explanatory

variables in the statistical models in this study is determined in several steps,

see fig. 4. First, the log-transformations of all 11 variables are computed, as the

relationships between the drivers and the deforestation is often not linear. These

22 variables are then checked for high correlations with each other. From any
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pair of variables that has an absolute correlation above 0.85, the one with the

lower correlation with the independent variable is excluded. Each time a model

is fit to a subregion –396 times for the year 2002 and 396 times for the year 2012 –

, the remaining variables are used in an automated stepwise variable selection

process to select the variables that are relevant for that area. The selection starts

by fitting the model using all offered variables. In each subsequent step, one

variable is selected to be excluded. The variable that is excluded is the one that

improves the model least, as evaluated by Akaike’s Information Criteria. The

variable selection is repeated for each subregion so that the optimal combination

of explanatory variables for each subregion is found. Table 1 lists the available

variables and shows which ones are used as candidates for explanatory variables.

From these, the relevant ones for each subregion are selected.

Figure 4: The variable selection process.

A term representing spatial autocorrelation is not included in the model. De-

forestation is known to be strongly autocorrelated. However, if we explain defor-

estation as a function of itself, such an outcome is of little use for understanding

the drivers of deforestation [30] and for finding ways of reducing it, which is the

ultimate goal of land change research. Furthermore, the effect of spatial autocor-

relation is expected to be reduced by the regionalisation.

There is a number of assumptions that apply to linear regression models and

which do not hold in this case. The observations that are used for fitting the

model are not independent, as they are spatially neighbouring grid cells with

a strong spatial autocorrelation. It is also more than questionable whether the
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relationship between the response variable and the explanatory variables is linear

and has a constant variance.

2.4 Evaluation metric

When linear regression models are compared, the usual measure is the determi-

nation coefficient R2, or the adjusted R2 for multiple regression, which tell us how

much of the variation in the dependent variable can be explained by the explana-

tory variables [23, 36].

The R2 metrics describe individual statistical models. When we divide the

study area in subregions, each subregion will be associated to a different model.

We are not interested in the performance of each individual model but of the com-

bination of models for the whole study area. We have a set of several models that

we want to compare with other sets of several models. We could use an average

of the adjusted R2 as a goodness of fit metric. However, since the subregions’

area sizes are very different, we would need to apply weighting. The problem is

that it would be hard find a balanced set of weights. If we weight adjusted R2

of the subregions by area, large areas are given a lot of weight, but they do not

necessarily have high deforestation amounts. Thus, their adjusted R2 gets a lot

of weight, while they are not of much relevance in the deforestation estimation.

Thus, using an area-weighted adjusted R2 does not provide a good criteria.

Another reason for not using the adjusted R2 is that it depends on the range of

data the model is fitted to. When fitting a model to subsets of data, the correlation

in those subsets may be lower than the overall correlation, but the quality of the

fit regarding the whole dataset (i.e. the combined residuals of the various models)

could still be better than when applying a single model.

As a demonstration, consider fig. 5. On the left, a single model is fitted to a

point cloud, with an R2 of 0.85. After splitting the point cloud into two subsets,

the models fitted to them have R2 values of 0.24 and 0.76, although the lines

are fitted closer to the subsets. Compared to the small range of the data, the

variability is quite high.

For comparing the quality of fit of the different regionalisations, we need a

single number that requires no weighting. This value should be directly com-

parable between the models fitted to the various partitions and the whole study

area.

For this, we use the statistical models fitted to that region to predict the accu-

mulated deforestation (i.e. the response variable) in each grid cell of each sub-
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Figure 5: The effect of subsetting on the R2: On the left, a single linear model is

fitted to the data (R2=0.85). On the right, the data is split and two linear models

are fitted (R2= 0.24 and R2=0.76). The R2 of both models on the right is lower than

the R2 of the single model, although the fitted lines are closer to the data.

region separately. The predictions are combined for the whole study area and

compared to the deforestation that really occurred. We compute the difference

between the predicted and the real deforestation amount in each grid cell (resid-

uals). The absolute values of these residuals are summed and divided by two to

get the overall amount of misplaced deforestation. We divide the overall amount

of misplaced deforestation by the sum of really occurred deforestation to find out

the percentage of the total amount that was misplaced.

e =
0.5 ∑n

i=1 abs(dreali − dpredi)

∑n
i=1 dreali

∗ 100 (1)

where

dreali = Real accumulated deforestation in the grid cell i

dpredi = Predicted accumulated deforestation in the grid cell i

The residuals include both overestimation and underestimation. If the overall

amount of deforestation (predicted and real) is the same – as it happens in linear

models, as the sum of residuals is zero – each underestimation in one place results

in an overestimation in another place. By counting both, we count double. That

is why the factor 0.5 is introduced in the equation. As a demonstration, consider

the following example: 100 units of deforestation were predicted, of which half

is placed incorrectly. Then there are 50 units of overestimation where this defor-

estation was wrongly placed, and 50 units of underestimation where it should
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have been placed. Without the factor 0.5 in the error equation, 100 wrong units

would be counted, and the error would be 100 % – although of the 100 units of

deforestation, only 50 were placed wrongly and an error of 50 % would be more

meaningful.

This error metric has the following characteristics. If none of the predicted

values deviates from the real values (perfect fit), its value is 0. Its value is 100 %

if all deforestation is placed in the wrong location and if the predicted and real

amounts of deforestation are the same. (It can exceed 100 % if negative predic-

tions occur – in this case, the absolute values of the residuals have no limit and

can exceed the total of deforestation.)

If the predicted and real amounts of deforestation differ, this metric should not

be applied. Its values are not meaningful in those cases. For example, if all de-

forestation is placed in wrong places, smaller overall predicted amounts would

lead to smaller errors. An underestimation of the total amount would have a

smaller error than an overestimation of the total amount, even if the amount of

mis-estimations is the same. Thus, meaningful comparisons of the model perfor-

mance cannot be achieved anymore.

Going back to the example in fig. 5, we can see that the errors are 8.68 %

and 8.67 %. As the observations in both subsets stem from the same process, we

would expect approximately the same error value, independently of how many

subsets we apply. Of course it decreases slightly because of better fitting to local

subsets, but the overall values are comparable. Strong error decreases would

indicate a different behaviour of the subsets, e.g. because the underlying process

might be nonlinear.

2.5 Regionalisation: Dividing space into subregions

2.5.1 Overview of regionalisation techniques

Regionalisation is the division of an area into regions so that the regions are as

homogeneous as possible inside and the difference between the regions is maxi-

mized. The area is composed of spatial entities, which are aggregated based on

their similarity in one or several attributes. For example, a nation is composed of

municipalities which can be aggregated into regions based on their similarity in

population density.

Grouping a large number of objects into a subgroups is a common task in data

analysis and frequently done by clustering analysis. In regionalisation, there is an

additional constraint: The groups have to be contiguous, i.e. the entities forming
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them have to be neighbours in space. For this, several types of methods exist

[25]. Some methods use a non-spatial clustering technique first and then apply

this spatial constraint subsequently. Other methods incorporate space by using a

spatial closeness measure into the non-spatial clustering process. A third group

of methods uses trial-and-error to optimize a random initial regionalisation, and

a fourth group of methods is using the spatial constraint as a basis, in the sense

that the spatial contiguity already affects the choice of objects whose similarity is

evaluated. The SKATER algorithm, which is used in this study, belongs to this

latter group.

2.5.2 The SKATER algorithm

The SKATER algorithm [2] is a graph-based regionalisation algorithm. It is per-

formed in three steps. First, a connectivity graph is created from the spatial en-

tities of the study area. In this graph, each node is a spatial entity and it is con-

nected to all adjacent spatial entities by edges. The cost of the edges represents

the dissimilarity of the spatial objects. The dissimilarity of the objects is measured

by using the Euclidean distance in attribute space between the attribute vectors

of both spatial objects.

As a next step, a spanning tree is created from this graph. This is a subgraph

of the connectivity graph which contains all the n nodes, but only n-1 edges, so

that all nodes are connected to each other, and the removal of any one edge leads

to dividing the spanning tree into two separate subgraphs. Spanning trees are not

unique. Various spanning trees can be constructed from the connectivity graph.

The one used in the SKATER algorithm is the one with the minimal sum of dis-

similarity over all edges, called the minimum spanning tree. It is constructed by

starting at one node and adding one node after another to the tree. At each step,

the node that is added is the one with the least expensive direct connection edge

to one of the previously chosen nodes. Unless there are neighbours of a node that

have the same dissimilarity, the minimum spanning tree is unique.

Finally, the subdivision into regions is achieved by iteratively removing edges

from the minimum spanning tree. Each removal results in disconnected sub-

graphs, which correspond to the disconnected (but adjacent) regions. Each re-

moval subdivides a region into the most homogeneous subregions. The hetero-

geneity of a region is measured by the intracluster square deviation, which is the

sum of squared deviations of the attribute values of each object from the average

attribute values of all objects in that region. So at each step, the edge should be
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removed that splits the graph into subgraphs with the lowest intracluster square

deviations. As evaluating this for each and every possible edge is computation-

ally intensive, a heuristic is applied. It starts with evaluating the edge removal

that splits the graph into subgraphs of similar size, and then examines neighbor-

ing edges. The selection of the neighboring edges to be evaluated next is based

on a balancing function that aims at finding the most homogeneous subregions

as well as avoiding regions that are very unbalanced in size.

2.5.3 Advantages and disadvantages of the SKATER algorithm

The advantage of this algorithm is that the spatial constraint is inherent to the

clustering procedure [2]. In contrast, when using algorithms where space is merely

included as one of the attributes along with the other attributes, it is more difficult

to ensure spatial adjacency [25]. Another advantage of the SKATER algorithm is

that the number of regions can be controlled, as the regions are obtained by sub-

sequently splitting the graph [25]. This is an advantage in this study, as we want

to evaluate the effect of splitting the study area into predetermined numbers of

regions.

Figure 6: The chaining effect in the SKATER algorithm.

[25] argues that an important shortcoming of the SKATER approach is the

so-called chaining effect. During the generation of the minimum spanning tree,

nodes to be added are chosen based on their similarity to nodes already chosen.

For this, only the similarities between two single nodes are considered. This can

result in chains of contiguous points where the first and the last are not necessar-

ily similar (see fig. 6).

[25] also criticizes SKATER’s contiguity definition. In SKATER, only the edges

that connect directly adjacent nodes are used to compute the similarity between

clusters. However, two clusters might be connected by an edge which is a very

low cost, but connects two nodes that are not directly adjacent, but in adjacent

regions (see fig. 7). Using SKATER, such clusters cannot be merged, as those
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edges are not present in the connectivity graph. [25] argue that they should be

connected.

Figure 7: Contiguity definition. In the SKATER algorithm, only the dashed edges

can be used for merging regions. The black one is discarded.

They propose a family of algorithms that are generalised extensions of SKATER

and which avoids these shortcomings and which they also argue to be more ef-

ficiently implemented. However, they are available as Java implementation op-

erating on shapefiles, so applying them would have meant a considerable effort

compared to the implementation of SKATER in the TerraLib library [8], as all the

data were kept in a TerraLib database.
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3 Results

3.1 Partitions that were created and compared

A total number of 66 partitions were compared among each other, and to the re-

sults obtained by applying a model to the entire study area. Half of the partitions

split the study area into 3 subregions and the other half split it into 9 regions (see

tab. 3). These numbers of regions were chosen in order to compare the regions

with the partitions proposed by Becker [5] that were described in the introduction

1 (see fig. 8) and the federal states (9 states covering the area).

Figure 8: The partition proposed by Becker (source: [5], adapted).

For creating the partitions, we use the implementation of SKATER available

in the TerraLib library, as it is efficient and easily applied on the data stored in

a TerraLib database [8]. All attributes are scaled to range between 0 and 1000 to

give them all the same weight in the dissimilarity measure. We define the spatial

adjacency by a maximum distance of 26 km between the grid cells’ centroids. As

all grid cells measure 25 by 25 km, this ensures that the direct neighbours of each

grid cell are chosen (Von-Neumann-neighbourhood), but not the grid cells that

touch the grid cells at the corners (Moore-neighbourhood), whose centroids are

at a distance of
√

2 ∗ 25 = 35.4 km. This way, we avoid regions that are only

connected by a corner. Whenever available, the attributes were used for several

years to ensure that the regions are not only maximally similar in space, but also

in time.

Applying the algorithm on the data shows that it tends to produce regions of

very heterogeneous sizes, even when applied to uniformly distributed random

data, even though the heuristic explained in section 2.5 was designed to avoid

this. For this reason, the regionalisations were re-run a second time, this time

20



Chapter 3: Results

with a enforced minimum region size. In this case, the implementation does not

allow to specify the resulting number of regions, so several tentatives had to be

carried out to reach partitions of 3 and 9 regions.

3.1.1 Spatial meaningful partitions

These partitions are created by applying the regionalisation algorithm to one or a

combination of spatial attributes.

1. Corn, soy and cattle: Area planted with corn (ha), area planted with soy (ha)

and heads of cattle; yearly values from 2002 through 2012. Three attributes,

11 years.

2. Deforestation rates: Yearly deforestation rates from 2002 through 2012. One

attribute, 11 years.

3. Accumulated deforestation: Yearly accumulated deforested area from 2002

through 2012. One attribute, 11 years.

4. Accumulated deforestation per forest area: Yearly accumulated deforestation

from 2002 through 2012 divided by the area that is suitable for forest. One

attribute, 11 years.

5. Farm sizes: The percentages of farm area in four farm size classes (percent-

age). Four attributes, one year (2006).

6. MODIS land cover. The six land cover classes croplands, pasture, forest,

natural pasture, water and other land cover from the MODIS land cover

dataset were used on a yearly basis. Six attributes, 11 years.

7. Residuals 2002: The residuals of the statistical model fitted to the whole

study area in 2002. One attribute, one year (2002).

8. Residuals 2012: The residuals of the statistical model fitted to the whole

study area in 2012. One attribute, one year (2012).

9. Transport costs: Transport costs to state capitals and to export ports. Two

attributes, one year (2008).

10. TerraClass land cover. The eight land cover classes aggregated from the

TerraClass 2010 dataset were used. Eight attributes, one year (2010).
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11. Full explanatory variables. In this partition, all the variables used as explana-

tory variables in the statistical models were used: Indigenous areas, pro-

tected areas, soy and corn areas, cattle heads, farm size percentages, trans-

port costs. The log-transformations were excluded. Eleven attributes, 11

years (except for farm sizes percentages and transport costs, which are only

available for one year).

To avoid having to write ”the partition created using the set of attributes MODIS

land cover”, we will designate it by ”the partition MODIS land cover”.

3.1.2 Spatial random partitions

20 spatial random partitions are created by assigning random values drawn from

a uniform distribution to the grid cells and then applying the regionalisation al-

gorithm on these random values. By this method, we expect to obtain random

subregions. However, if we do not enforce homogeneous sizes, this process re-

sults in 2 or 8 extremely small regions, and the remainder of the study area forms

the last region. Therefore, approximately homogeneous region sizes were en-

forced.

3.1.3 Non-spatial subsets

For comparing the performance of the spatial subregions with completely ran-

dom (i.e. non-spatial) subsets of the data, the process of modelling, predicting

and evaluating was applied to random non-spatial subsets of the study area. The

study area is randomly split 50 times into 3 subsets of approximately the same

number of grid cells, 50 times into 9 subsets of the same number of grid cells, 50

times into 3 subsets of random sizes and 50 times into 9 subsets of random sizes.

3.2 Comparison scenarios

All the partitions described in the previous section are compared in three scenar-

ios. In scenario A, the models are fitted to the values of 2002 and predictions are

made using the same data. Analogously, in scenario B, the models are fitted to

the values of 2012 and predictions are made for 2012. In scenario C, the models

fitted to the data of 2002 are applied to the data of 2012, simulating a predicting of

future deforestation from the 2002 perspective, but knowing about the deforesta-

tion drivers in 2012. In scenario A and B, we evaluate the goodness of fit of the

models themselves. In scenario C, we evaluate how well the relationship between
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Type of partitions
Partitions in to

3 regions

Partitions into 9

regions

Becker 1

Federal states 1

Spatial Random 10 10

Meaningful spatial 11 11

Heterogeneous

region sizes

11 11

Random

non-spatial

50 50

Heterogeneous

region sizes

50 50

Table 3: Overview over the 66 partitions

the accumulated deforestation and the proxies for the driving factors, expressed

by the model coefficients, holds for the situation 10 years later. Scenario C has

two sub-scenarios. In C1, a correction factor is applied to the predictions before

computing the error, to ensure the correct overall demand amount. This is im-

portant for the error metric to provide meaningful results (see section 2.4). In C2,

the correction factor is applied by subregion.
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3.3 Performance of the partitions under scenarios A and B

(modelling for understanding the status quo)

Subdividing the study area into smaller subregions reduces the error of the sta-

tistical models of accumulated deforestation, measured by the error metric pre-

sented in section 2.4. The model fitted to the entire study area has an error of

26.2 % in 2012, meaning that 26.2 % of the overall amount of deforestation is

placed in the wrong grid cell, and 21.7 % in 2002. All the spatial partitions out-

perform these results (see figs. 26, 27 in the appendix for an overview of the errors

of all partitions).

Fig. 9 shows the adjusted R2 of the models of various partitions compared

with the error measure. As mentioned, it is difficult to conclude the performance

of the combined models using their adjusted R2 values because the variation be-

tween the subregions of one partition can be high and no clear trend is visible

when comparing the partitions.

The best results for 3 and 9 regions in 2002 is reached by the partitions using

TerraClass land cover (errors of 18.5 % for 3 regions and 16.8 % for 9 regions), which

has a better fit than the Becker regions (22.0 %) and the federal states (19.2 %).

The best result for 3 regions in 2012 is reached by the partition Accumulated

deforestation (15.7 %), which has a better fit than the Becker regions (e = 18.1 %).

For 9 regions, Accumulated deforestation (homogeneous region sizes) with an error of

14.4 % is the best, outperforming the partition of the federal states, which reach

an error of 15.7 %.

In general, estimations using a partition into 9 regions perform better than

partitions using 3 regions (see fig. 10). On average, partitioning into 3 regions

results in an error of 22.1 % (2012: 18.0 %), partitioning into 9 regions in an error

of 19.3 % (2012: 15.8 %)(see also fig. 12).

Fig. 11 shows the distributions of the error values for the meaningful spa-

tial partitions (right) compared to the spatial random partitions (second from the

right) and to the non-spatial random subsets of the data (second on the left), in

2002. While completely random partitions have similar error values as a single

the model fitted to the entire study area, the error when using spatially random

partitions are similar to the one using meaningful partitions (see also fig. 12).

The pattern in 2012 is very similar with slightly lower overall errors. The error

of the whole study area is 26.2, by partitioning into 3 and 9 subregions, we reach

average errors of 22.1 and 19.3, respectively.

The partitions that performed best for 3 regions in 2002 are (1) TerraClass land
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Figure 9: Comparison of the adjusted R2 of the individual subregions’ models

(left) and the errors of the entire partitions (right) in 2002.

cover, (2) Accumulated deforestation, (3) MODIS land cover and (4) Accumulated de-

forestation per forest area. For 9 regions, it is (1) TerraClass land lover, (2) MODIS

land cover, (3) Residuals 2002 and (4) Accumulated deforestation (homogeneous region

sizes). Figures showing the errors of all the partitions of 2002 and 2012 can be

found in the appendix (figs. 26,27). Tables of the errors are available on the DVD

attached to this study.

In 2012, the best regionalisations for 3 regions are (1) Accumulated deforestation,

(2) TerraClass land cover, (3) Accumulated deforestation per forest area (4) MODIS land

cover. For 9 regions, it is (1) Accumulated deforestation (homogeneous region sizes),

(2) Accumulated deforestation (heterogeneous region sizes), (3) TerraClass land cover

(homogeneous region sizes) and (4) TerraClass land cover (heterogeneous region sizes).
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Figure 10: Boxplots of the error de-

pending on the number of regions of

the partitions in 2002. The box indi-

cates the interquartile range and the

whiskers extend to values up to 1.5

times the interquartile range. More

extreme values are plotted as dots.

The pattern in 2012 is essentially the

same, so its boxplot is not shown.

Figure 11: Boxplots of the error de-

pending on the randomness of the

partitions in 2002. The pattern in

2012 is essentially the same, so its

boxplot is not shown.

3.4 Performance of the partitions under scenarios C (modelling

for estimating future deforestation)

In this section, the effects of regionalisation on estimating future deforestation are

presented. For this, the models fitted to the 2002 data are applied to the explana-

tory variables’ values of 2012.

When using a model to predict for the dataset it was fitted to, the total amount

of deforestation is estimated correctly, as sum of residuals is zero. When apply-

ing the model to a different data set, i.e. with different values of the explaining

variables, this is not given. For the entire study area, applying the 2002 model

on the 2012 data results in slightly overestimating the amount of accumulated

deforestation in 2012 by a factor of approximately 1.005 (estimated: 673,084 km2,

real: 669,526 km2, see tab. 4). The real amount in 2002 was 539.262 km2, so the

increase in accumulated deforestation in reality was 24.16 %, while the estimated

increase in accumulated deforestation was 24.82 %.

The overall deforestation amount is less well captured when regionalisation
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Figure 12: Boxplots of the error depending on the number of regions and the

randomness of the partitions in 2002. The pattern in 2012 is essentially the same,

so its boxplot is not shown.

is used. By applying the 2002 regional models to the 2012 data, the estimation of

the accumulated deforestation of the whole study area is often heavily over- or

underestimated: In six partitions, the predicted sum of deforestation is negative –

a result that is absurd, as there cannot be less than 0 km2 of deforested area. In

another two partitions, the predicted sum of deforested area is overestimated by

more than double (by factor 3 and factor 5.2). In all of these eight partitions with

extreme misestimations of the amount, at least one of the regions over- or under-

estimates the deforestation amount by a factor of more than 20. Fig. 13 shows

by how many times the overall deforestation amount is over- or underestimated

in the various partitions and in the individual subregions. It shows that in many

cases, a bad overall estimation is caused by one extreme region. This extreme

behaviour will be discussed in section 4.3.

In the remaining 58 partitions, the predicted sum deviates on average approxi-

mately 59,500 km2 from the real sum, with the deviations ranging from -437,601.1

to 317,236.8 km2.

The four best amount estimations – and the only ones outperforming the

whole study area – are three random partitions (twice into 3 regions, and once

into 9 regions), and the partition Full explanatory variables (3 homogeneous regions),

the latter deviating -2520 km2 from the real amount (see tab. 4). Fig. 30 (in the
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Amounts of accumulated deforested area

Real amount 2002 539,262 km2

Real amount 2012 669,526 km2

Predicted for 2012 (model fitted to entire study area) 673,084 km2

Predicted for 2012 (best partition, Full explanatory variables) 667,006 km2

Table 4: Amounts of accumulated deforested area in 2002 and 2012, estimated

and real.

appendix) shows the deviations of the predicted deforestation amounts from the

real values for all the partitions.

As mentioned in section 2.4, applying the error measure to predictions whose

total predicted amount of deforestation differs from the real amount leads to mis-

leading error values – partitions with underestimation are privileged, the more

extreme the underestimation, the smaller the error. Thus, before computing the

error, we apply a correction factor on the predictions to enforce equal predicted

and real amounts. Because of this, the error only allows comparing the correct-

ness of the spatial allocation of the models. These results are the scenario C1.

The spatial allocation is achieved by the partition Residuals 2002 with an error

of 16.3 % (9 regions). The best partition into 3 regions – and the second best

overall – is TerraClass land cover (16.6 %). Becker’s regions and the federal states

perform rather badly (errors of 31.4 % and 38.1 %). They perform even worse than

the undivided study area, which has an error of 22.4 %. In both the scenarios A

and B, the undivided study area performs worst. Now, even with the correction

factor, 28 of 66 partitions perform worse than it.

This is because the correction factor keeps the relative differences between the

regions constant. The partitions that misestimate strongly the overall amount of

deforestation do so because one of the regions misestimates extremely, while the

other regions have a normal behaviour. Thus, by applying the correction factor,

the regions that have extreme overestimations are downscaled. At the same time,

the predictions in the regions whose predictions had approximately correct mag-

nitudes also get downscaled, so they become less realistic. In the cases where the

sum of predictions was negative, the whole pattern is inverted – deforestation is

predicted in the most unlikely places, and the highly deforested areas get nega-

tive predictions. This effect leads to error values exceeding 100 % (up to almost

420 %), even with a correction factor. The 10 partitions with the worst errors are
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Figure 13: The misestimation of the overall deforestation sum in the different par-

titions (black dots, excluding the eight outliers) and in the individual subregions

(grey dots and lines). While the estimation of deforestation sum in the whole

partitions varies between factor 0.35 and 1.47, the estimation in the individual

subregions can reach factor 20. This graph should demonstrate the extreme be-

haviour of some subregions compared to the entire study area . The names of the

partitions are not relevant for this, but can be look up in fig. 30 in the appendix.

the 10 that have the poorest prediction of the overall deforestation amount.

To reduce the influence of the outlier regions, a correction factor by region is

applied in scenario C2. Now there are no more extreme outliers, the error values

range from 16.2 % to 39.1 %. Most partitions that performed very poorly before

perform similarly to the other partitions now. While there is no change in the

best four partitions, the ranking of the other partitions changed a lot. Still, 25 %

of the partitions perform worse than the undivided study area (error of 22.4 %),

including the Becker regions and the federal states (22.8 % and 31.0 %).

3.5 Ranking of the partitions in various scenarios

In each of the four scenarios above – (A) models fitted to 2012 and applied to

2012, (B) models fitted to 2002 and applied to 2002, and (C) models fitted to 2002

and applied to 2012 (with correction factor (C1) and correction factor by subre-

gion (C2)) –, the ranking of the partitions and their performance compared to

the undivided study areas are different. Tab. 5 shows on overview over the best

partitions in the four scenarios.

The partition TerraClass land cover is the best in four out of eight comparisons –
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Scenario A

(2002)

Scenario B

(2012)

Scenario C1

(pred. 2012,

correction

factor

applied)

Scenario C2

(correction

factor

applied by

region)
Best partition

(3 regions)

18.52 %

(TerraClass

land cover)

15.74 %

(Accum.

deforestation)

16.52 %

(TerraClass

land cover)

16.65 %

(TerraClass

land cover)
Best partition

(9 regions)

16.78 %

(TerraClass

land cover)

14.35 %

(Accum.

deforestation,

hom. region

size)

16.30 %

(Residuals

2002)

16.18 %

(Residuals

2002)

Table 5: Best partitions in all scenarios

but it scores 14th in scenario C1 for 9 regions. Accumulated deforestation is best in

only one of eight comparisons, but is always among the 7 best (ranks: 1, 2, 2, 4, 4,

4, 6, 7). Accumulated deforestation (homogeneous region sizes) is the best in scenario

B (2012) with 9 regions, but scores badly overall (ranks: 1, 4, 12, 12, 12, 13, 15,

20). In scenario B (2012) for 3 regions, Accumulated deforestation scores best, but

is only marginally better than TerraClass land cover (errors of 15.7 % vs. 15.9 %).

So for finding out a general trend, it is better to include not only the ’winners’,

but the entire rankings. Fig. 14 allows to visually seize the whole distribution of

all the rankings by colour coding. It shows the ranks of all partitions in the eight

comparisons from table 5. The best partitions are coloured in the darker shades

of grey. The table is sorted by the sum of the ranks, so that partitions that rank

well in several comparisons are on top.

It is visible that the rankings in the various comparisons can differ a lot in

some cases, but a general trend is visible, especially for the scenarios A and B.

Among the partitions that perform well in many cases are the one that are done

by land cover – TerraClass land cover, MODIS land cover, and Accumumlated defor-

estation. The partitions by variables that were used as explanatory variables in

the statistical models are found on the lower ranks.

Fig. 15 shows another table of the partitions, this time ordered by how well

the partition performed relative to the undivided study area. A negative value

means that this partition performed worse than the undivided study area. The
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Figure 14: Visualisation of the eight rankings (4 scenarios, distinguished by num-

ber of regions). The darker the colour, the better the partition performs. The table

is sorted by the columns’ sums.
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higher the (positive) value, the better the partition performed and the darker the

grey shade.

The figure shows that partitioning improved the overall goodness of fit most

in 2002, using 9 regions. The next best improvement is provided by partitioning

into 9 regions in 202. Negative values only occur in the scenarios C1 and C2.

TerraClass land cover, Accumulated deforestation by forest area and MODIS land cover,

which are among the best in scenarios A, B and parts of C perform worse than

the whole study area in scenario C1 for 9 regions.

Because of the large range of values, scenario C1 gets it a lot of weight in the

ordering. If we sort by only the scenarios A and B (see fig. 16), the colour pattern

shows how different the scenarios C’s ranking is from scenarios A and B. They

agree in the low performance of the partitions by the explanatory variables, but

disagree strongly in the performance of the land cover related partitions Terra-

Class land cover (homogeneous region sizes), Accumulated deforestation (homogeneous

region sizes) and Accumulated deforestation by forest area (homogeneous region sizes).

The rankings of scenario C1 and C2 in 3 regions are very similar (see fig. 17).

For 9 regions, they differ a lot (see fig. 18).
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Figure 15: Visualisation of the eight rankings (4 scenarios, distinguished by num-

ber of regions). The partitions are ranked by their performance relative to the

undivided study area. The darker the colour, the better the partition performs.

The values are the differences in error to the undivided study area. The table is

sorted by the columns’ sums.

33



Chapter 3: Results

Figure 16: Visualisation of the eight rankings (4 scenarios, distinguished by num-

ber of regions), sorted by the performance in scenarios A and B. The partitions are

ranked by their performance relative to the undivided study area. The darker the

colour, the better the partition performs. The values are the differences in error to

the undivided study area.
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Figure 17: Rankings of the partitions

into 3 regions in scenarios C1 and

C2: There is hardly any change.

Figure 18: Rankings of the partitions

into 9 regions in scenarios C1 and

C2: There is substantial change be-

tween the two rankings, except for

the best three partitions.
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4 Discussion

4.1 General discussion of the effects of regionalisation

Regionalisation into subregions reduces the overall error of the models. This was

expected as by subdividing the area, we can fit the models more precisely to the

local behaviour.

This implies that the modelled phenomenon varies across space. If the mod-

elled phenomenon were constant over space, the subregions would capture the

same behaviour, resulting in similar models and a similar overall error – like the

non-spatial random subsets do in this study. So the low error in the spatial parti-

tions compared to (non-spatial) random subsets confirms that the relationship of

the deforestation with the explanatory variables varies across space.

This spatial variation is nothing new. Subregions have been used in deforesta-

tion modelling before. However, it was not clear how much fitting local models

improves the results, as measures evaluating to the individual models, such as

the adjusted R2, cannot capture the overall performance. [1] fitted models to the

three Becker regions and obtained lower adjusted R2 values for each of the sub-

regions than for the undivided study area. While they could use and interpret

the difference in the regression coefficients, it was not clear how much better the

modelling of deforestation got by the regionalisation.

The results presented in this study allow for evaluation how much we win by

subsetting space, quantitatively. The best partitions resulted in a decrease of the

error of between 6 % and 9.4 % compared to using just a single model for the

entire study area.1 At the same time, the partition Becker regions got 4.2 % better

than the undivided study area and the best partition into 3 regions got 7.7 %

better.

While the regionalisation clearly outperforms the models fitted to non-spatial

random subsets, the error of the spatial random partitions is not clearly worse

than the meaningful spatial partitions. This is not surprising, since the random

partitions are spatially connected and thus capture some of the effects of local

spatial autocorrelation that exist in the data. There is not an infinite number of

possible subdivisions of the area into 3 or 9 contiguous even-sized subregions, so

1This is the difference in error between partition and undivided study area. It is not a decrease

by 6-9.4 %, which would mean that the error of the undivided study area is 100 %. For example,

the partition TerraClass land cover (9 regions) in 2002 has a difference in error of 9.4 % compared to

the undivided study area. This means that the amount of deforestation that was misplaced using

the undivided study area, and is now correctly placed, is 9.4 % of the total deforestation sum.
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it is not unlikely to capture meaningful regions by chance.

4.2 Discussion of the best partitions and comparison with refer-

ence partitions

In this section, we discuss the performance of the spatial partitions. The most

important maps of partitions and of other spatial variables are included in the

text. For the maps of all other variables and partitions, as well as the maps of

the residuals of the models fitted to all the partitions, please refer to the DVD

attached to this study.

Overall, the partitions using variables related to land cover and deforestation

perform better than the partitions using the variables derived from the census.

The latter capture regions that are relatively homogeneous in the combination

of driving factors. The former are homogeneous in their deforestation amount.

If the relationship between deforestation and explanatory variables were linear

and strongly correlated, these would result in similar partitions. This is consis-

tent with the high spatial autocorrelation of deforestation. By regionalising into

regions that are homogeneous in the amount of accumulated deforestation, we

approximate the effect of considering both global and local spatial autocorrela-

tion factors in the model.

The slightly better performance of the deforestation-related partitions indi-

cates the driving factors used in the statistical model do not completely explain

the amount of deforestation. Decision-making on land use change is related to

different factors, including economic, cultural and institutional one. It is diffi-

cult for census-based variables such as agricultural area or number of bovines to

capture deforestation related to land speculation. In many cases in Amazonia,

people decide to cut forest based on future expected revenues when the land is

resold to farmers [28]. This results in a moving frontier effect in regions with high

accumulated deforestation. Speculators sell their land to incoming farmers and

expand the frontier, leading to more deforestation which will only be captured

later in time by economic-related variables [9].

As we have mentioned before, the accumulated deforestation reflects the land

cover change of several decades, while the driving factors are driving the de-

forestation in the current moment. As mentioned by several studies, the spa-

tial pattern of deforestation changes over time. Thus, the explanatory variables,

which reflect the recent state of driving forces, may be more related to the de-

forestation rates than to the accumulated deforestation. Then, areas with similar
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Figure 19: The accumulated deforested area and the deforestation rates in 2002

and 2012 (source INPE/PRODES).

deforestation rates but different accumulated deforestation would show different

relationship between accumulated deforestation and the driving factors.

It is not surprising that the TerraClass partitions perform well, as they cap-

tures both – the amount of forest is related to the dependent variable, and the

other land cover classes which are closely related to the agricultural driving fac-

tors. Furthermore, the TerraClass dataset is closely related to the PRODES dataset,

as they share the areas mapped as forest and non forest. The MODIS dataset also

combines information about forest and agricultural land covers, but is indepen-

dent of the PRODES dataset, which might explain its lower performance. Other

regionalisations that perform relatively well are the ones using the residuals of

the models fitted to the entire study area. This makes sense, as they capture re-

gions that have a behaviour deviating from the rest of the study area, that’s why

they have high residuals.

Fig. 20 shows eight partitions that are highly ranked in scenarios A and B. The

partitions Accumulated deforestation, TerraClass land cover, Accumulated deforestation

by forest area, Accumulated deforestation and MODIS land cover are the four best par-

titions into 3 regions in 2002 as well as in 2012 (with slightly different rankings).
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They look very similar, as can be seen in fig. 20.

Figure 20: The eight best partitions into 3 regions for scenarios A and B.

It seems that by partitioning into these regions, we capture something that

we do not capture with other regionalisations or by using the undivided study

area. These regions have a more homogeneous response to deforestation drivers

than other regions, such as the Becker regions used in previous studies, which is

shown in fig. 8.

The four best partitions have in common that they separate the northeastern

tip of the study area (western Maranhão, parts of Tocantins, eastern Pará – for

a map of the federal states, please consider fig. 25) from the rest. This region

is characterized by a high amount of cattle (visible in fig. 23, also confirmed by

the studies cited in the introduction) and a high amount of accumulated defor-

estation, as it has been being deforested for many years19. Three of the parti-

tions consider a small region in the south of the study area (parts of Rondônia,

39



Chapter 4: Discussion

southwestern Mato Grosso) a distinct region, which has even more cattle than

the northeastern tip. In both regions, indigenous and protected areas play a very

little role. Soy and corn are also present in these areas, but their region of dom-

inance is rather in central Mato Grosso. MODIS land cover, instead of selecting

the southern tip, selects the Boa Vista area in Roraima. That region has high val-

ues in the agricultural variables, but not a high accumulated deforestation, as the

area is dominated by non-forest vegetation (32 in the appendix).

which also has high deforestation and much corn and cattle. Probably, a re-

gionalisation into four areas, combining these patterns, would perform very well.

If the agricultural attributes play a large role, why are the partitions using the

explanatory variables not performing so well?

4.2.1 Why does the partition by the explanatory variables not perform so well?

The partition using the full explanatory variables highlights two regions - one

is the Xingú indigenous area, and the other is an area close to Colombia, which

coincides with the municipality São Gabriel da Cachoeira, which is very distinct

from the surrounding areas regarding the percentage of very small farm sizes,

and with the indigenous area Alto Rio Negro, see fig. 21. Variables that have

very abrupt changes is space, such as variables on municipality basis or clearly

delimited indigenous areas, have a strong influence on the regionalisation a lot,

as the algorithm easily discerns the high dissimilarity values associated with the

abrupt borders. Particularly, as all variables are scaled to 0-1000 for regionalisa-

tions, this municipality is very dissimilar from all other regions. The percentage

of small farms value is not particularly high, but higher than in the other munic-

ipalities, so the rescaling of the attributes to 0-1000 before regionalisation gives it

a heavy weight.

4.2.2 Why does the partition by the agricultural variables not perform so well?

The partitions using only the agricultural attributes is shown in fig 22. It does

capture the area in Rondônia as a distinct region, but not the northeastern area.

Instead, a large area in the southeastern study area is merged as one region, in-

cluding Tocantins, parts of Pará and most of Mato Grosso.

The agricultural variables represent what is happening during the years 2002-

2012. We can see that the northeastern area is not highlighted very much in the

agricultural variables from 2002 to 2012 23. Cattle is similarly abundant in the

south as in the northeast. Corn and soy area greatly emphasize the southeast,
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especially more recently. So the regionalisation created based on the agricultural

variables of each year over 10 years highlights the southeast instead of the north-

east.

Partitions based on land cover reflect the spatial pattern of accumulated defor-

estation. The recent deforestation (yearly deforestation rates) is slightly more in-

tensive the in southeast, coinciding with the agricultral dynamics, but the north-

east has a high accumulated deforestation, as it has been deforested for decades.

This left the northeast with a very distinct land cover pattern (see figs. 31 and 32

in the appendix). So the partitions using land cover classes reflect past changes

rather than the recent dynamics. This is further confirmed by the presence of

secondary vegetation in the northeastern area, (as seen by TerraClass dataset, see

32 in the appendix), indicating that the deforestation is not a recent phenomenon

and parts of the area are already abandoned.

This explains the different partitions created by regionalisation using land

cover and using agricultural attributes and their differing performance. The sta-

tistical models used in this study model accumulated deforestation, not yearly

deforestation rates. So by using partitions that single out the northeast region,

we capture a region with very distinct behaviour in the modelled phenomenon,

which leads to good results in the modelling. Furthermore, the agricultural vari-

ables, especially soy and corn, are less present in northeastern region than in other

areas with high accumulated deforestation (e.g. Rondônia, Mato Grosso). Thus,

this region has a distinct behaviour of the dependent variable in relation to the

agricultural explanatory variables. This is why modelling it as a separate region

improves the results.

4.2.3 The partitions into 9 regions

The partitions into 9 regions look less similar among each other, see fig. 24. But

the areas identified in the partitions into 3 regions – northeastern area, Rondônia/

Western Mato Grosso cattle area, Roraima area in the north, and the southeastern

area with intensive corn and soy culture – can be seen again. All of the partitions

in fig. 24 highlight the northeastern area. The best partitions catch all of areas

identified above.

4.2.4 Comparison with the Becker regions and the federal states

The observations above could explain the relatively poor performance of Becker’s

regions and the federal states.
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The Becker partition includes both southeast and northeast in one large re-

gion. It captures much area that has less accumulated deforestation than the very

intensive northeastern, e.g. the area west of the city of Belém and Marajó island.

The Roraima area is included in western region, and not distinguished an indi-

vidual region. Overall, the Becker regions comprise a more heterogeneous area

than the partitions created by the regionalisation algorithm.

The federal states have the same effect. While the areas in north (Roraima)

and southwest (Rondônia) are separate, the northwestern deforestation hotspot

is shared by Tocatins, Maranhão and Pará. Pará also covers much area which does

not show a high accumulated deforestation, so this region is quite heterogeneous

regarding deforestation.

4.3 Discussion of the findings from scenario C

In this scenario, the models were used for predicting a different moment, by using

models fitted in moment t1 to predict the behaviour of a different moment t2. In

this case, the goodness of the partitions is not just expressing in which subregions

the deforestation response to the regressors is most spatially homogenous, but

also in which it stays most constant over the 10 years time lapse.

The comparison between the predictions using the 2002 models show that

estimating predicted total amount of deforestation by statistical models is partic-

ularly prone to misestimations in small subregions, which strongly decreases the

benefit of partitioning space.

Decreasing area sizes increase the chance of getting a subregion where few

regressors play a big role, while others are relatively spatially homogeneous –

especially if the regions are chosen to be spatially homogeneous in (some) regres-

sors. The spatially homogeneous regressors may also have a large influence on

the overall amount of deforestation, but due to their low variation, the have no

big effect in the model. Then if there is a strong change in the regressor, this ef-

fects the overall amount heavily. For example, a strong increase in regressor A

may not influence the overall amount much, as at the same time, there is a strong

decrease of regressor B. If the regressor B plays no big role in the model fitted, as

it was spatially constant in t1, we misestimate the amount extremely.

Such an over-reliance on one regressor causes the strong outliers in predicted

amounts in scenario C. The eight partitions that predict a negative amount or

an amount more than double the real amount do so because (at least) one of the

regions misestimates the deforestation amount by a factor of more than 105 or less
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than -23. This always occurs in the region that covers the area of the state Roraima

in the north of the study area, around the city Boa Vista, and the models fitted

to those regions are almost always depending strongly on the planted soy area.

Other areas with high residuals are the Santarém region and the Paragominas

region, 300 km east of Belém. All of these regions show a high increase in soy

area between 2002 and 2012.

Another factor contributes to the strong misestimation of the overall defor-

estation amount in that area. The models fitted to those regions are relying heav-

ily on soy area, but for some reason, the best fit was obtained by using at the

same time the soy area and its log-transformation, with very high magnitude of

coefficient values and opposed signs. Such a curve can have a precise fit in a

small range of soy values, but can have rather extreme behavior with increasing

soy values. So in these areas, where soy increased a lot, the predicted values

’go crazy’. This explains why the demand in the Roraima region is sometimes

heavily overestimated and sometimes heavily underestimated.

To prevent this kind of behaviour, the variable selection process could be

adapted or the use of a variable and its log-transformation at the same time could

be prohibited. But even disconsidering these extreme cases, the prediction of de-

mand remains less precise in smaller regions compared to whole cell space. For

example, in the states, the area with the highest residuals is Pará, but the model

relies on various variables.

This problem occurs mainly in partition to 9 subregions. In 3 subregions, the

regionwide correction factor does not change much, indicating that no single area

has extreme behaviour.
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Figure 21: The partition created by all explanatory variables (on top) and the two

explanatory variables that contributed mostly to this spatial pattern: Indigenous

areas (middle) and the percentages of farms in size class 0 to 0.2 ha (bottom)

(sources: FUNAI, IBGE).
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Figure 22: The partition created by using the attributes planted corn and soy area

and number of cattle in the years 2002-2012.
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Figure 23: The variables planted corn area, planted soy area and number of cattle

in 2002 and 2012, used for statistical modelling and for regionalisation (source:

IGBE, adapted).
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Figure 24: The eight best partitions into 9 regions for scenarios A and B. The ranks

in both scenarios are noted above each map.
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Figure 25: The federal states of Brazil. The study area is coloured in dark

grey. The nine federal states that cover or overlap with it are: Pará (PA), Ama-

zonas (AM), Acre (AC), Rondônia (RO), Roraima (RR), Amapá (AP) and parts of

Maranhão (MA), Mato Grosso (MT) and Tocantins (TO) (surce: IBGE, adapted).
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5 Conclusions and further work

This thesis studies whether regionalisation methods can improve statistical mod-

elling of deforestation in Amazonia. To the best of our knowledge, this is the

first study where different regionalisations are evaluated to find out what criteria

work best.

The regionalisation procedure succeeded in identifying regions in space that

show distinct behaviour regarding deforestation. Several deforestation hotspots

that have been mentioned in the literature on land change in the Amazon re-

gion were identified: The cattle-raising hotspot in Rondônia, the corn- and soy-

intensive central Mato Grosso area, and the northeastern region. Furthermore, it

singled out a region that is not a deforestation hotspot, but shows the opposite

contrast to the rest of the area – the Boa Vista area, with high agricultural dynam-

ics but low accumulated deforestation, contrasting with the usual relationship of

land cover change in the Amazon. This shows that we were successful in de-

tecting spatial patterns relevant for land change in Amazonia. We showed that

regions related to land cover attributes give the best results, and that they are

better suitable for modelling accumulated deforestation than regionalisations by

federal states or the regions proposed by Becker.

Overall, the subregions capture different relationships between deforestation

and its driving factors, at least when these relationships are assumed to be (and

modelled as) linear. It is unlikely that the relationship between deforestation and

driving factors is strictly linear in reality. If the process is non-linear, the sub-

regional models can better approximate local parts of the relationship, thus the

errors reduce.

Even in the unlikely case if we had the perfect set of regressors, regionalisa-

tion can improve the results if the process is non-linear. Another reason for the

better performance of subdivided space is that we may lack relevant explaining

variables which vary spatially, so we capture their effect by using the subregions.

The different effect of the driving factors in space can help to find locally better

adapted ways of fighting deforestation. Thus, having a clearer idea of which

regions have a homogeneous response to the driving factors can be a first step

towards a more local adapted understanding of deforestation.

For predicting future deforestation, using subregions, especially smaller ones,

risky. Choosing the appropriate partition can be tricky, as it cannot be excluded

that a partition that performs well for modelling a status quo (as in scenarios A

and B) performs poorly in prediction for subsequent points in time. Thus, spatial
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regionalisation when applying models for future estimation should only be used

in ex-post analysis, where the reality for the target point in time (t2) is known and

the effect of the regionalisation can be evaluated. The benefit of regionalisation is

then to find subregions that have similar responses to driving factors over time.

Furthermore, in an ex-post analysis where the distribution of deforestation in t2

is known, correction factors can be applied by region to correct the total amount

of deforestation, so that the error describes exclusively the quality of the predic-

tion of the spatial pattern in the subregions. Then, comparing the error reveals

regions in which the spatial distribution of deforestation responds constantly to

the driving factors, while the overall demand for deforestation is assumed to be

independent of the spatial factors, but rather given externally.

From our results, we can point out some directions of future work in using

regionalisation for land use studies. The first issue concerns choice of explana-

tory variables. If possible, one should use explanatory variables that capture the

regional differences. In the case of Brazilian Amazonia, we could include addi-

tional variables such as land tenure situation, population, productivity factors,

logging data, land prices and bank credits.

The other director for future work is the use of a different regionalisation

methods. As we discussed in the Methods section, SKATER tends to create re-

gions that are very different in size. Future studies could use alternatives such as

region growing or REDCAP.

We split Amazonia into 3 and 9 regions. We could extend the study to test

other region numbers. the results of this study indicate that using more regions

tends to improve the goodness of fit, but is more prone to problematic effects due

to overfitting.

Our regionalisation were able to confirm knowledge about deforestation hotspots

in Pará, Rondônia and Mato Grosso. A more detailed characterisation of the ob-

tained regions could be done to see what conclusions can be drawn from them.

For this, an improved variable selection could be performed, reducing the risk of

overfitting that occurred in some of the regions in this study.

A next step would be to find out whether these findings are valid over a larger

range of applications. This could answer the questions whether those regions

perform well because they really have an inherently different behaviour in reality,

or whether the performance of the regionalisations depend on the model used or

the variables included.

It would also be interesting to include not only deforestation, but various land

cover / land use transitions. Land use/cover change can be expressed as a sparse
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matrix including all possible transitions between various land uses/covers. De-

forestation comprises various possible transitions. By examining them separately,

the regional differences are expected to be even more emphasized and regionali-

sation would be more useful.

To sum up, we found out that regionalisation helps understanding the spatial

differences of land change processes, especially if the area under study is large.

Regionalisation is also useful to find gaps in the explanatory variables used in

statistical models of land change, since when a large regions is broken into sub-

regions, variables which may not be significant at the global scale turn out to be

relevant to explain local processes. In all, regionalisation has proven to be a useful

and valuable tool in land use change studies.
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//www.ibge.gov.br/home/estatistica/economia/pam/2009/PAM2009_

Publicacao_completa.pdf, 2009. Accessed: 2014-04-25.

[15] Instituto Brasileiro de Geografia e Estatı́stica (IBGE). Produção pecuária
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[31] Pablo Pacheco and René Poccard-Chapuis. The complex evolution of cat-

tle ranching development amid market integration and policy shifts in the

brazilian amazon. Annals of the Association of American Geographers, (22 May

2012), 2012.

[32] Alex Pfaff. What drives deforestation in the brazilian amazon? evidence

from satellite and socio-economic data. Journal of Environmental Economics

and Management, 37:26–43, 1999.
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Figure 26: The errors of all partitions in 2002 (scenario A). The partitions on top

are performing best. The horizontal grey lines show the performance of the fed-

eral states, the Becker regions and the undivided study area.
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Figure 27: The errors of all partitions in 2012 (scenario B). The partitions on top are

performing best. The horizontal grey lines show the performance of the federal

states, the Becker regions and the undivided study area.
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Figure 28: The errors of all partitions for predicting 2012 based on models fitted

to 2002 (scenario C1). For each partition, a study area-wide correction factor is

applied, making sure that the overall amount of deforestation is correct. Thus, the

error measures only the quality of the spatial allocation of the models. It provides

no evidence about the models’ capacity of predicting deforestation amounts.
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Figure 29: The errors of all partitions for predicting 2012 based on models fitted

to 2002 (scenario C2). A correction factor is applied by region, making sure that

the amount of deforestation is correct in each region. Thus, the error measures

only the quality of the spatial allocation of the models. It provides no evidence

about the models’ capacity of predicting deforestation amounts.

60



Chapter A: Graphics of the errors of all partitions in the scenarios A, B, C1 and
C2, and maps of land cover variables used for regionalisation

Figure 30: The deviations in km2 of the predicted deforestation amounts for 2012

for all partitions, obtained by subtracting the real amounts from the predicted

amounts. The centered vertical line means no deviation. The dashed grey lines

represent deviations of ± the real amount. We see four of the partitions that

have negative total amount (left of the left line), and two that overestimate more

than by double. Two extreme negative outliers are omitted to keep the graphic

readable.
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Figure 31: Examples for the MODIS land cover data used for partitioning the

study area. This figure shows the four classes for 2002 and 2012. For regionalisa-

tion, all the data from the years in between these two is also used. The patterns

are very similar, but an increase in croplands and pasture in the 10 years is visible

(source: NASA/MODIS, adapted).

62



Chapter A: Graphics of the errors of all partitions in the scenarios A, B, C1 and
C2, and maps of land cover variables used for regionalisation

Figure 32: The TerraClass land cover data used for partitioning the study area

(source: INPE, adapted).
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