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"An approximate answer to the right problem is worth a good deal more than an 

exact answer to an approximate problem."  

J. W. Tukey  (1915� – 2000�) 
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ABSTRACT 
    
Sensor networks comprise small electro-mechanical devices that communicate over 
a wireless network. These devices collect environmental data and send them to a 
remote base station. The main goal of a data collection scheme for sensor 
networks is to keep the network’s database updated while saving the limited 
nodes’ energy as much as possible. To achieve this goal without continuous 
reporting, data suppression is a key strategy. The basic idea behind data 
suppression schemes is to send data to the base station only when the nodes’ 
readings are different from what both nodes and base station expect. One 
alternative of data suppression is to cluster the nodes, aggregate their data and 
send only a summary to the base station. We propose to group the nodes into 
spatially homogeneous clusters, which consider both the geographical distance 
and the similarity of measurements between the neighboring nodes. Through 
simulated experiments, we have concluded that spatially homogeneous clusters 
produce data summaries with a higher statistical quality if compared with the 
usual ordinary clustering methods. Since distributed clustering algorithms play an 
important role in energy-efficient data collection proposals for sensor networks, we 
present Distributed Data-aware Representative Clustering (DARC) algorithm and 
Data-Aware Distributed Clustering Algorithm (DA-DCA). DARC and DCA build 
clusters around clusters’ representatives, which are able to produce more 
homogeneous clusters than the usual clustering proposals. Then, they produce 
data summaries that estimate the nodes’ data with a smaller error if compared 
with the usual data-aware clustering proposals. Another important characteristic 
of data suppression schemes is their sensitiveness to aberrant readings, since these 
outlying observations mean a change in the expected behavior for the readings 
sequence. Transmitting these erroneous readings is a waste of energy. In this 
thesis, we present a temporal suppression scheme that is robust to aberrant 
readings. We propose to use a technique to detect outliers from a time series. 
Since outliers can suggest a distribution change-point or an aberrant reading, our 
proposal classifies the detected outliers as aberrant readings or change-points 
using a post-monitoring window. This idea is the basis for a temporal suppression 
scheme named TS-SOUND (Temporal Suppression by Statistical OUtlier Notice and 
Detection). TS-SOUND detects outliers in the sequence of sensor readings and 
sends data to the base station only when a change-point is detected. Therefore, 
TS-SOUND filters aberrant readings and, even when this filter fails, TS-SOUND does 
not send the deviated reading to the base station. Experiments with real and 
simulated data have shown that TS-SOUND scheme is more robust to aberrant 
readings than other temporal suppression schemes proposed in the literature 
(value-based temporal suppression, PAQ and exponential regression). Furthermore, 
TS-SOUND has got suppression rates comparable or greater than the rates of the 
cited schemes, in addition to keeping the prediction errors at acceptable levels. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



SUPRESSÃO DE DADOS EM REDES DE SENSORES: MELHORANDO A 

QUALIDADE DAS ESTIMATIVAS E A ROBUSTEZ A DADOS ABERRANTES 

 

RESUMO 

Redes de sensores são formadas por minúsculos componentes eletromecânicos 
que coletam dados ambientais e os enviam até uma estação-base remota por meio 
da comunicação sem fio entre os nós-sensores. O principal objetivo de um 
esquema de coleta de dados para rede de sensores é manter a estação-base 
atualizada enquanto economiza a maior quantidade de energia possível. Para 
atingir este objetivo sem um monitoramento contínuo, a supressão de dados é 
uma estratégia chave. A idéia da supressão de dados é enviar dados para a 
estação-base somente quando os dados dos nós-sensores forem diferentes do que 
os nós e a estação-base esperam. Uma forma de suprimir dados é agrupar os nós-
sensores, agregar seus dados e enviar somente um resumo para a estação-base. 
Esta tese propõe agrupar os nós-sensores em conglomerados espacialmente 
homogêneos, que consideram tanto a distância geográfica e a similaridade de 
medidas entre nós-sensores vizinhos. Utilizando experimentos simulados, nós 
concluímos que conglomerados espacialmente homogêneos produzem resumos 
que possuem uma qualidade estatística melhor se comparados com os resumos 
produzidos pelos métodos de aglomeração usuais (ordinary clustering). Visto que 
algoritmos de aglomeração distribuídos têm um papel importante na eficiência 
energética das propostas para coleta de dados em redes de sensores, nós 
apresentamos o algoritmo Distributed Data-aware Representative Clustering 
(DARC) e o Data-Aware Distributed Clustering Algorithm (DA-DCA). Os algoritmos 
DARC e DCA formam conglomerados de nós-sensores em torno de um 
representante dos conglomerados, o que gera conglomerados mais homogêneos 
do que aqueles formados pelas propostas usuais na literatura. Assim, estes 
conglomerados produzem resumos que estimam os dados dos nós-sensores com 
um erro menor se comparado aos algoritmos de aglomeração data-aware usuais. 
Outra característica importante dos esquemas de supressão de dados é a sua 
sensibilidade a dados aberrantes. Estas observações discrepantes significam uma 
mudança no comportamento esperado para aquela sequência de observações. 
Transmitir estes dados errôneos para a estação-base é um desperdício de energia. 
Nesta tese, nós apresentamos um esquema de supressão temporal que é robusto a 
observações aberrantes. Nós propomos usar uma técnica de detecção de outliers 
em uma série temporal. Visto que outliers podem ser um indício de ponto de 
mudança na série ou uma observação aberrante, nossa proposta é classificar os 
outliers detectados como observação aberrante ou pontos de mudança usando 
uma janela de pós-monitoramento. Esta é a idéia por trás do  TS-SOUND 
(Temporal Suppression by Statistical OUtlier Notice and Detection).     TS-SOUND é 
a nossa proposta para um esquema de supressão temporal de dados. Ele detecta 
outliers na sequência dos dados de um nó-sensor e envia dados para a estação-



base somente quando uma mudança é detectada. Deste modo, o TS-SOUND filtra 
as observações aberrantes e, mesmo que este filtro falhe, o TS-SOUND não envia a 
observação discrepante para a estação-base. Experimentos com dados reais e 
simulados mostraram que o TS-SOUND é mais robusto a observações aberrantes 
do que outros esquemas de supressão temporal propostos na literatura. Além 
disto, TS-SOUND consegue taxas de supressão comparáveis ou maiores do que as 
taxas de supressão de outros esquemas além de manter os erros de predição em 
níveis aceitáveis. 
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1 INTRODUCTION 

Understanding how the physical world works is a constant concern of the 

humanity. During centuries, the human beings observe the environment, 

make questions, conclude and observe again. The study of the environment 

is an important task to warrant the survival of many species. How to 

recognize an imminent earthquake without recognizing its signals? But 

how to know which are such signals without collecting data about 

earthquakes?   

To expand their knowledge about the physical world, environmental 

researchers have installed observation structures that are able to collect 

data on several kinds of environments in large geographical areas. In the 

East of Norway, mechanisms to detect glaciers’ movements have been 

embedded in the ice.  Mini meteorological stations have been installed 

along the stem of high trees to study the microclimate of a forest in 

Sonoma, CA, EUA. Structures to measure the air quality are present in 23 

places in Sao Paulo city, Brazil. There are much many examples, as the 

programs for earth observation of the National Oceanic Atmospheric 

Administration1 and the U.S. Geological Survey2. 

In Brazil, the National Institute for Space Research (INPE) coordinates the 

Brazilian System for Environmental Data Collection. This system comprises 

the satellites SCD-1, SCD-2 and CBERS-2, a network with 750 platforms for 

data collection that are spread over the national territory, two reception 

stations (Cuiabá, MT, and Alcântara, MA) and the Center for Data 

Collection Mission (Centro de Missão Coleta de Dados) in Cachoeira 

                                                 
1 http://www.noaa.gov 
2 http://www.usgs.gov 
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Paulista, SP. Figure 1.1A presents the spatial distribution of the Data 

Collection Platforms (PCD, in Portuguese) and Figure 1.1B shows one of 

these platforms. The satellites SCD-1 and SCD-2 enable the communication 

among a PCD and the reception stations. A PCD collects meteorological 

data as air temperature, air relative humidity, atmospheric pressure, wind 

speed, wind direction, solar radiation, soil temperature and pluviometric 

precipitation. These structures have large dimensions and are powered by 

solar batteries. 

 

 

A) Spatial distribution of the PCD network. 

 

B) Installed PCD. 

  
The colors in A) identify the PCD type: the red dots are the meteorological stations; the blue 
dots are the hydrometeorological stations and the yellow dots are the agrometeorological 
stations.  
Source: http://tempo.cptec.inpe.br:9080/PCD/ 

 

Figure 1.1 - Brazilian System for Environmental Data Collection. 
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A large number of applications use the data collected by the PCD such as 

meteorological predictions3, hydrological models and agriculture studies. 

Because of its usefulness and dimension, the Brazilian System for 

Environmental Data Collection is a concrete example of the huge effort of 

the human society to understand the physical world. 

Despite of being a frequent activity, monitoring phenomena in large 

geographical areas is still a costly and hard task. The observation structures 

are expensive and require frequent maintenance. Besides, they often have 

constraints on the deployment, which make unfeasible the proper coverage 

of the study area. In addition to this, the temporal resolution of the 

collected data may not be large enough to allow for studying the 

phenomenon. However, an emerging technology promises to solve these 

problems and help us to observe the physical world: the sensor networks. 

 

1.1 1.1 1.1 1.1 Sensor NetworksSensor NetworksSensor NetworksSensor Networks    

Sensor nodes are minuscule electro-mechanical platforms that comprise 

sensors, a processor, a radio, memory and batteries (Figure 1.2). The 

sensors can collect environmental data as air temperature, atmospheric 

pressure, suspension particles, salinity, air relative humidity, soil moisture, 

solar radiation and so on.  A sensor node collects data, processes them and 

sends the result to a remote base station using wireless communication 

among its neighbors. The sensor nodes and the set of wireless links among 

them form a sensor network. If the sensors collect data whose geographical 

                                                 
3 http://www.cptec.inpe.br 
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information is important (for instance, localization), they are called 

geosensors and form a geosensor network (NITTEL and STEFANIDIS, 2005). 

The wireless communication is an important characteristic of a sensor 

network. In addition to the small size of its components, the wireless 

aspect of the sensor netwoks makes them a valuable instrument for 

collecting data without being invasive or disturbing. This is especially useful 

to study ecosystems and wild life, which are sensitive to the human 

presence.    

 

  

Figure 1.2 - Sensor nodes.  Left side: “Spec” mote (by University of California- Berkeley).  

Rigth side: Golem Dust, one of the generations of sensors of the Smart Dust 

Project. 

The research in sensor networks has been motivated by military 

applications, as the surveillance systems for the oceans and the networks to 

detect ground targets. However, the recent technological advances have 

decreased the production costs and increased the capacity of the 

mechanisms. This has contributed to widen the range of applications for 

sensor networks. Among them, we have the detection of natural disasters 

(earthquakes, seaquakes, volcanic eruptions)  and non-natural disasters 

(biological contamination, oil spilling, fires), habitat monitoring, traffic 

organization and smart environments. 
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In spite of the rapid advances in the technological development of the 

sensors mechanisms, the sensor networks installed until now have been 

part of experiments. This is the case of the projects Great Duck Island and 

ZebraNet. 

The Great Duck Island Project (Mainwaring et. al, 2002) began in August, 

2002, when researchers of the University of California (Berkeley) and the 

Intel Research Laboratories installed a sensor network in Great Duck Island, 

Maine (EUA). The goal was to monitoring the behavior and the habitat of a 

bird named Storm Petrel.  Initially, 32 sensor nodes (Figure 1.3) were 

deployed close to the birds’ burrows. Posteriorly, the researcher enlarged 

the network adding more nodes and meteorological stations. The sensor 

nodes collected data on air temperature and relative humidity, atmospheric 

pressure and other variables. The periodic nodes readings were transmitted 

to a special node named gateway through the wireless communication 

among the nodes. The gateway re-transmitted the readings to the base 

station, which stored the readings. At each 15 minutes, a copy of the 

database was transmitted, through a satellite, to the server at the 

University in Berkeley. The users had access to database through the 

internet4.  

In ZebraNet Project5 (JUANG et al., 2002), sensor necklaces with GPS 

(Global Positioning System) were installed in zebras (Figure 1.3) of the 

natural reserve of Sweetwaters, Republic of Kenia. . . .  From the biological 

point of view, the goal of the project was to monitor the nocturnal 

behavior of the animals and answer some questions about migration and 

                                                 
4 http://www.greatduckisland.net/ 
5 http://www.princeton.edu/%7Emrm/zebranet.html 
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relationships inter-species. The sensors were designed to register and store 

the animals’ position every 3 minutes. At each one hour, meteorological 

and environmental data, luminosity and temperature data, in addition to 

body movements, were registered during 3 minutes. As the nodes 

platforms (the zebras), the base station (a laptop computer) was also 

mobile and often went through the sensors field (zebras’ habitat) to gather 

the sensed data. 

 

 

Figure 1.3 - Sensor nodes deployed by the projects Great Duck Island and ZebraNet 

 Project (left and right side, respectively). Left side: MICA-2 (by Intel and       

University of California- Berkeley). Rigth side: Sensor necklace.  

Although promising to be a powerfull instrument for pervasive and non-

disturbing data collection, sensor networks are a constrained environment. 

They have limitations in the data processing, communication range, data 

storage and, mainly, in the energy. Sensor nodes carry a limited amount of 

energy, which is used to do all their tasks. Once a sensor network is 

deployed, its goal is to operate with a minimum or no human attendance.  

The data transmission faces the main limitation of a sensor network: the 

energy consumption. The communication task spends much energy, more 

than processing and collecting data (POTTIE and KAISER, 2000). As a result, 

the data collection protocols for sensor networks are an increasing research 

field and a  large number of protocols has been proposed (AKKAYA and 
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YOUNIS, 2004). These proposals present several strategies to reduce the 

energy spending. 

The data delivery model of a sensor network depends on its application. 

Tilak et al. (2002) have identified three data delivery models: continuous 

data collection and delivery; continuous data collection but the data 

delivery is triggered by pre-defined events; and on-demand data collection 

and delivery (queries). The first data delivery model is suitable to 

applications that require continuous updates of the database at the 

network’s base station, such as environmental and habitat monitoring. In 

these applications, researches are usually interested in observing 

phenomena that require data with high temporal resolution to be 

completely understood, such as changes in the micro-climate of a forest 

(TOLLE et al., 2005), seismic  waves along an active volcano (WERNER-

ALLEN et al., 2006), soil moisture recharge along the roots of a tree (RYEL 

et al., 2003), glaciers movement (PADHY et al., 2005) and so on. In this 

thesis, we are interested in these types of applications. 

Since sending continuous reports would quickly run out the limited energy 

of the nodes, sensor networks designed for environmental and habitat 

monitoring have few alternatives to save energy in their data routing. One 

of these alternatives is to use data suppression.  

 

1.1.1.1.2222    Data Data Data Data suppression to suppression to suppression to suppression to collectcollectcollectcollect data i data i data i data in a sensor nn a sensor nn a sensor nn a sensor networketworketworketwork    

To define a data suppression scheme, nodes and base station have to agree 

on an expected behavior for the nodes’ readings. Therefore, nodes only 

send reports to the base station when their sensed values do not agree 

with the expected behavior. Otherwise, nodes suppress their data. If the 

base station does not receive any data from a node, it uses the expected 

behavior to predict the suppressed data.  
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In a temporal suppression scheme, a node decides when to suppress or not 

its data. In a given time period, one of three events can occur: a) all nodes 

decide to suppress their data; b) all nodes decide to send their data to the 

base station or c) some nodes send data while the remaining nodes decide 

to suppress their data. A temporal suppression scheme uses the correlation 

among the readings of a same node to build the expected behavior for the 

nodes’ readings (TULONE and MADDEN, 2006). In a spatial suppression 

scheme, at each time period, some nodes are allowed to send their data 

while the remaining nodes must suppres their data (KOTIDIS, 2005). 

Differently from the temporal scheme, the base station receives data in all 

time periods, but not from all nodes. A spatial suppression scheme 

considers the correlation among the observations of neighboring nodes 

(SILBERSTEIN et al., 2007a). Finally, a spatio-temporal suppression scheme 

considers both types of correlations, temporal and spatial, to build the 

expected behavior of the sensed data (SILBERSTEIN et al., 2007a).  

Another strategy to save energy in sensor networks that have to keep the 

base station continuously updated is to cluster the nodes and aggregate 

their data. Before each transmission, nodes form clusters around a node 

chosen as their cluster head. The head node receives data from its cluster 

members, aggregates these data and sends only a summary to the base 

station. From now on, we call this strategy cluster-and-aggregate. It 

localizes the communication among nodes, reduces the messages volume 

traveling through the network and, as a result, reduces the energy 

spending. Moreover, data processing spends less energy than the 

communication among the nodes  (POTTIE and KAISER, 2000).  

We can consider the cluster-and-aggregate strategy as a spatial data 

suppression scheme, since the nodes of a cluster, except by the head, do 

not transmit their data. The base station agrees on estimating the 

suppressed data using the summary received from the cluster head.  



 33 

Both data suppression and data aggregation (in cluster or along the 

routing path) can be considered to be instances of Information (or Data) 

Fusion. In general, both terms (data and information) are accepted. 

Widening the discussion about a definition for Data Fusion, Wald (1999) 

defines data fusion as “a formal framework in which are expressed means 

and tools for the alliance of data originating from different sources. It aims 

at obtaining information of greater quality; the exact definition of ‘greater 

quality’ will depend upon the application”. In the sensor network context, 

one can use information fusion with at least two objectives: to improve 

data accuracy and/or save energy (NAKAMURA et al., 2007). 

In the information fusion context, data aggregation represents the instance 

of summarization.  It allows for energy saving, although it means accuracy 

loss (NAKAMURA et al., 2007). Since “any processing of time-series of data 

acquired by the same sensor or different sensors is a fusion process” 

(WALD, 1999),  a temporal data suppression can be also considered as an 

instance of information fusion. 

 

1.1.1.1.3333    Problem DefinitionProblem DefinitionProblem DefinitionProblem Definition    

Several schemes have been proposed to achieve energy saving by data 

suppression ( such as Kotidis (2005), Chu et al. (2006), Tulone and Madden 

(2006), Silberstein et al. (2007a) ) and data aggregation (such as 

Subramanian and Katz (2000), Manjeshwar and Agrawal (2001), 

Heinzelman et al. (2002), Lindsey and Raghavendra (2002), Younis et al. 

(2002), Singh and Gore (2005) and those described by Akkaya and Younis 

(2004)). 

The energy saving is the most common metric to evaluate the efficiency of 

a data collection protocol.  However, in the case of sensor networks that 

must continuously update the base station, both strategies to save energy 
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(data suppression and data aggregation) lead to estimates for the sensed 

data. Therefore, we argue that statistical quality of these estimates should 

be also used to evaluate the performance of a data collection scheme. In 

this thesis, we evaluate the statistical quality of an estimate using the 

estimation error, which is defined as the difference between the real value 

and its estimate. Besides, we propose a distributed clustering algorithm to 

produce summaries that are better estimates for the aggregated data if 

compared with the usual clustering proposals. This clustering algorithm can 

be used the basis for a spatial suppression or spatio-temporal suppression 

scheme. 

Although being a key strategy to get continuous updating without 

continuous reporting (SILBERSTEIN et al., 2007a), data suppression 

schemes are sensitive to aberrant readings. The suppression scheme 

interprets these erroneous values as a change in the expected behavior and 

nodes send an outlying reading to the base station. This means a waste of 

energy and, possibly, a bad updating of the expected behavior.  

Sensors measuring environmental variables produce nonsense readings as a 

result of temporarily malfunctioning or due to some intervention on the 

monitored environment that is not related to the monitored variables. In 

regular weather stations, which have low energy constrains, nodes transmit 

or record the aberrant readings, which are identified and deleted at the 

base station. However, for the constrained environment of a sensor 

network, transmitting nonsense values means to waste valuable resources. 

As a solution to this problem, this thesis proposes a temporal data 

suppression scheme to be robust to aberrant readings.  
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1.1.1.1.4444 Hypothese Hypothese Hypothese Hypothesessss, obje, obje, obje, objecccctitititives and main contributionsves and main contributionsves and main contributionsves and main contributions    

In this thesis, we see the sensor network as an instrument for sampling 

spatio-temporal phenomena, collecting spatio-temporal data. By data 

collection, we mean all the three steps: sensing, processing and 

transmitting. The product of a data collection is the database at the base 

station. 

For an important set of applications, the constraints of a sensor network 

does not allow for getting the real sensed data at the base station. 

Frequently, the network’s database is updated by estimates of the real 

sensed data. Trying to improve the quality of these estimates, the following 

hypotheses are considered: 

1) The statistical quality of the summaries produced by the cluster-

and-aggregate strategy can be improved if the clusters are spatially 

homogeneous; 

2) The energy saving, as well as the statistical quality of the updates 

in the network’s base station, can be improved if we use a temporal 

data suppression scheme that is robust to aberrant readings.   

The main goals of this thesis are twofold:  

1) Propose and evaluate a distributed clustering algorithm to 

produce summaries that are better estimates for the individual data 

if compared with the usual clustering proposals.  

2) Propose and evaluate a temporal data suppression scheme to be 

robust to aberrant readings. 

Besides the proposals described above, the main contribution of this thesis 

is to introduce the statistical quality of the estimates delivered to the 
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network’s user as an additional metric to evaluate the performance of a 

data collection proposal for a sensor network.    

 

1.51.51.51.5    Thesis Layout Thesis Layout Thesis Layout Thesis Layout         

This thesis comprises three papers on the topics discussed above and is 

structured as follows: 

a) Chapter 2 examines the effect of using a data-aware clustering 

procedure on the statistical quality of the data received by the base 

station. This chapter examines the first hypothesis. 

b) Based on the findings of Chapter 2, Chapter 3 presents a proposal 

for distributed clustering algorithm to obtain more homogeneous 

clusters of nodes. 

c) Chapter 4 presents the proposal for a temporal data suppression 

scheme that is robust to aberrant readings. This chapter examines 

the second hypothesis. 

d) Chapter 5 presents the concluding remarks and points to future 

works.  
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2 DATA-AWARE CLUSTERING FOR GEOSENSOR DATA COLLECTION♦♦♦♦ 

The advances in wireless and miniaturisation technologies are making 

possible the development of the sensor networks, a new instrument for the 

remote sensing of the physical world (ELSON and ESTRIN, 2004). 

Sensor networks are composed by a large number of small nodes. These 

nodes are electro-mechanical devices that measure environmental 

characteristics such as temperature, pressure, humidity and luminosity. 

These data are disseminated through wireless communication among the 

nodes until a base station is reached. Once sensor networks are deployed in 

the study region, they work without human attendance. 

The environmental monitoring is one of many potential uses of this 

emerging technology (XU, 2002), especially for hostile environments. 

According to Martinez et al. (2004), the sensor networks will make possible 

a realistic monitoring of the natural environmental. In their work, the 

authors discuss how the environmental monitoring evolved from data 

logging to sensor networks and describe the GlacsWeb project, an ongoing 

research in subglacial bed deformation.  

Other environmental applications involving sensor networks are described 

in the literature. Among them, we have the monitoring of the environment 

of rare and endangered species of plants in a volcano neighboring 

(BIAGIONI and BRIDGES, 2002); the monitoring of the habitat of seabirds 

(MAINWARING et al., 2002); the microclimate monitoring throughout the 

volume of giant trees (CULLER et al., 2004);  the flood monitoring to 

provide warnings and the monitoring of coastal erosion around small 

                                                 
♦ This chapter is an adaptation of the work in REIS et al. (2007).  
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islands (ENVISENSE-SECOAS). Until recently, experiments have been run on 

small-scale sensor networks and no large-scale networks have yet been 

deployed in practice. However,  as the sensors become smaller and cheaper 

(WARNEKE et al., 2001), sensor nodes are expected to be densely deployed 

in the environment. 

Some sensor networks are designed to collect data whose geospatial 

information is important. To stress their geographic characteristic, these 

networks are usually defined as geosensor networks (NITTEL and 

STEFANIDIS, 2005). The main goal of a geosensor network is to collect 

geospatial data while keeping the energy consumption at an acceptable 

level.  

Geosensor networks are an application-driven technology. The temporal 

resolution of the data determines their delivery model while the required 

spatial resolution defines the degree of data summarization. Tilak et al. 

(2002) have identified three data delivery models: continuous data 

collection and delivery; continuous data collection but the data delivery is 

triggered by pre-defined events; and on-demand data collection and 

delivery (queries). On the spatial resolution, some applications need the 

raw data of all sensing points (CHU et al., 2006,TULONE and MADDEN, 

2006), whereas others need just a summary of all sensors’ data, as those 

TAG (Tiny AGgregation) (MADDEN et al., 2002) has been designed for. In 

the middle of these two extreme cases, there are applications that accept 

an intermediate degree of data summarization, as maps of temperature 

and relative humidity, for instance. These applications have goals as 

identifying zones of interest such as hot and cold zones. Sensors’ data are 

summarized over subregions, pre-defined (GOLDIN, 2006) or not, and the 

spatial distribution of these summaries provides a report of the data 

variability over the entire region.   
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In this chapter, we are interested in applications that require a continuous 

data delivery and admit an intermediate degree of data summarization.  

For continuous data delivery, hierarchical cluster-based data routing 

protocols are considered to be the most energy efficient alternative 

(HEINZELMAN et al., 2002). Multiple cluster-based protocols as LEACH and 

LEACH-C (HEINZELMAN et al., 2002) are suitable for applications that 

admit data summaries over subregions of the sensor field. A cluster-based 

protocol assembles the sensor nodes into clusters before the data 

transmission. Except for clustering procedures as those in Kotidis (2005) 

and Tulone and Madden (2006), the usual clustering algorithms consider 

only the nodes closeness, which we define as ordinary spatial clustering. A 

node chosen as the cluster head receives data from all nodes in its cluster, 

aggregates these data and sends the summary to the base station. 

Clustering the nodes keeps most of the communication inside the clusters 

while data aggregation reduces the messages volume travelling through the 

network. These strategies together allow for energy saving.  

Data aggregation presumes nearby nodes have correlated data. Thus, they 

are similar to each other and one can aggregate the nodes’ data of an 

ordinary spatial cluster to represent this cluster. 

We agree with this reasoning but we believe presuming data correlation is 

not enough to produce data summaries that are the best estimates of the 

summarized data. A partition of nodes that considers only their 

geographical location is missing the most important: the measurements 

themselves. To make our point clear, consider Figure 2.1, which presents 

the spatial distribution of luminosity measurements, for instance. Suppose 

we regularly deploy a geosensor network in the region. The area delimited 

at right bottom corner has a lower spatial variability in its measurements 

than the delimited area at upper left corner. Suppose we use one single 

cluster to summarize the data of each area. A data summary as the 
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average, for example, estimates better the summarized data in the area at 

right bottom corner than in the area at upper left corner. Besides, a single 

cluster could summarize the data in the first area whereas the second area 

would require a larger number of clusters, to account for the increased 

spatial variability. To capture these different requirements, the nodes 

partition might consider the nodes measurements in addition to their 

geographical location.  

 

 

Figure 2.1 - Spatial distribution of luminosity measurements. 

 The delimited areas present different spatial variability in their measurements. 

Based on these considerations, we present the contributions of this 

chapter. 

 

2.12.12.12.1     Our proposal Our proposal Our proposal Our proposal     

We propose a data-aware clustering procedure that groups the nodes 

considering the spatial homogeneity of the nodes’ data in addition to their 

location. Our hypothesis is that data summaries based on spatially 

homogeneous clusters will have a better statistical quality if compared with 

data summaries based on ordinary spatial clusters. A statistical quality 
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measure expresses how well the data summary sent to the base station 

estimates the data collected by the nodes. 

In this chapter, our major concern is to examine how the spatial 

arrangement of the clusters in a geosensor network affects the statistical 

quality of the data received by the base station. We compare spatially 

homogeneous clusters with ordinary spatial clusters regarding the statistical 

quality of their summaries.  

The remainder of this chapter is organized as follows. Section 2.2 describes 

some proposals for data routing based on clusters and selects those 

suitable to our purposes. In section 2.3, we define the spatially 

homogeneous clusters and give a brief description of SKATER, the 

procedure for obtaining such clusters.  In Section 2.4, we present the data 

processing steps and the types of data produced when one samples a 

spatial dataset using geosensor networks with a multiple cluster-based 

routing protocol.  Section 2.5 presents the main results of simulated 

experiments comparing ordinary and spatially homogeneous clusters, based 

on the statistical quality of their data summaries. Finally, section 2.6 draws 

some concluding remarks. 

 

2.22.22.22.2         ClusterClusterClusterCluster----based proposals to route sensor databased proposals to route sensor databased proposals to route sensor databased proposals to route sensor data    

In this section, we describe the clustering procedures of the main cluster-

based data routing protocols and select those suitable to our purposes. 

Considering the applications we are interested in this chapter, the suitable 

protocols must have a continuous data delivery and produce multiple 

cluster summaries.  

Ibriq and Mahgoub (2004) have observed that the usual cluster-based data 

routing protocols just consider the spatial closeness of the nodes and their 



 42 

energy reserve to create the clusters. We define these clusters as ordinary 

spatial clusters. 

One of the first cluster-based data routing protocols developed for sensor 

networks was LEACH (Low-Energy Adaptative Clustering Hierarchy) 

(HEINZELMAN et al., 2000). LEACH´s clustering procedure has a distributed 

algorithm that uses an estimate of the energy level of the nodes to choose 

the cluster head nodes. To assemble the clusters, LEACH uses the strength 

of communication between the cluster head and the other nodes of the 

cluster as its closeness measure. Since LEACH´s clustering procedure has no 

control over the cluster heads distribution in the study region,  Heinzelman 

et al. (2002) proposed the LEACH-C protocol. The clustering procedure of 

LEACH-C uses a centralized algorithm at the base station that tries to 

optimize the clusters distribution over the study area. This optimization 

algorithm needs the energy level of the nodes as well as their location. As a 

result, LEACH-C is suitable for geosensors networks and its clusters are 

better distributed over the network area than LEACH clusters. 

We classify the clustering procedures of LEACH and LEACH-C as ordinary 

spatial clustering. Both protocols have a continuous data delivery model 

and produce multiple cluster summaries. Therefore, LEACH and LEACH-C 

are suitable to the purposes of this chapter. 

Many cluster-based data routing protocols have been proposed as versions 

of LEACH, such as PEGASIS (LINDSEY and RAGHAVENDRA, 2002), TEEN 

(MANJESHWAR and AGRAWAL, 2001) and their improvements.  In contrast 

to multiple cluster-based procedures of LEACH and LEACH-C, these 

protocols have clustering procedures that produce a summary of all 

sensors´ data. Since we are interested in applications that admit an 

intermediate degree of data summarization, PEGASIS and TEEN are not 

suitable to the applications we are interested in this chapter.  
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Some cluster-based data routing protocols were developed independently 

of LEACH, such as the proposals of Younis et al. (2002) and Subramanian 

and Katz (2000). In contrast to LEACH, these protocols were designed to 

networks that have supernodes. These special nodes are richer in energy, 

computational and communication resources than the other ones. The 

supernodes are the cluster heads, being responsible for data aggregation 

and data routing. Despite being a smart solution for the problem of energy 

constraint, a network with heterogeneous nodes creates a new constraint. 

The nodes’ deployment has to be controlled to avoid agglomerations of 

supernodes. This constraint reduces the ease of deployment, one of the 

wanted properties of a sensor network (HEINZELMAN et al., 2002).  

Therefore, we have not considered these protocols in this chapter. 

An extensive survey of cluster-based data routing protocols for sensor 

networks is not our aim. For a review of this subject, we refer to the works 

of Ibriq and Mahgoub (2004) and Akkaya and Younis (2004). 

 

2.32.32.32.3     Spatially Homogeneous ClustersSpatially Homogeneous ClustersSpatially Homogeneous ClustersSpatially Homogeneous Clusters    

In contrast to ordinary spatial clusters, the definition of spatially 

homogeneous clusters considers explicitly the nodes’ attributes besides 

their geographical location (ASSUNÇÃO et al., 2006). Spatially 

homogeneous clusters are clusters resulting from a partition procedure 

with three properties. 

First, nodes belonging to same cluster have to be similar to each other in 

some predefined attributes (cluster internal homogeneity). Second, nodes 

belonging to different clusters have to be different from each other 
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(heterogeneity among clusters). Third, the nodes of a same cluster must 

belong to a predefined neighborhood structure (closeness or contiguity). 

The clustering proposals in Kotidis (2005) and Tulone and Madden (2006) 

assemble clusters around representatives nodes6 based on the similarity 

between a representative node and the nodes inside of its range of 

communication. However, there is no warranty the first and second 

properties are satisfied. So, they cannot be classified as spatially 

homogeneous clusters. 

To get the spatially homogeneous clusters, we propose the use of the 

spatial clustering algorithm SKATER (Spatial ‘K’luster Analysis by Tree Edge 

Removal) (ASSUNÇÃO et al., 2006). This algorithm is a strategy for 

transforming the regionalisation problem into a graph partitioning 

problem. SKATER works in two steps. First, it creates a minimal spanning 

tree (MST) from the graph representation for the neighborhood structure of 

the geographic entities. The cost of an edge represents the similarity of the 

entities’ attributes, defined as the Euclidean squared distance between 

them. The MST represents a statistical summary of the neighborhood graph 

based on the entities’ attributes. In the second step, SKATER performs a 

recursive partitioning of the MST to get contiguous clusters. The MST 

partitioning considers explicitly the clusters internal homogeneity.  

In the geosensor networks context, the graph vertices are the sensor nodes, 

the edges are the radio links and the cost of an edge connecting a pair of 

vertices is the similarity between the nodes’ data.  

                                                 
6 We discuss these two clustering proposals in Chapter 3. 
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Spatially homogeneous clustering offers the possibility of transforming the 

undelivered raw data into information, since its clusters represent the 

partition of the sensor field that has great internal homogeneity regarding 

the values of monitored variable. This information cannot be directly 

extracted from the summaries based on ordinary spatial clusters or on 

clusters as those proposed in Tulone and Madden (2006), for example. As a 

result, spatially homogeneous clustering can be seen as a tool for spatial 

sensor data mining. 

 

2.42.42.42.4  Data Processing Steps Data Processing Steps Data Processing Steps Data Processing Steps of a Multiple Cluster of a Multiple Cluster of a Multiple Cluster of a Multiple Cluster----Based Routing ProtocolBased Routing ProtocolBased Routing ProtocolBased Routing Protocol    

We see geosensor networks as instruments to sample spatio-temporal data. 

The protocol that delivers these samples to the final user is a part of this 

sampling instrument. Geosensor networks that use a multiple cluster-based 

routing protocol submit the collected raw data to two processing steps: 

data sampling and data aggregation.  The main goal of this section is to 

define these data processing steps as well as their input and output data. 

Defining these processing steps is important to figure out the task of a 

geosensor network that employs a cluster-based protocol to route its data.  

Here, we suppose the final product of the geosensor network, which is the 

data delivered at base station, will be used to identify zones with extreme 

values. 

Figure 2.2 illustrates the path the data follow from the sensors field to the 

base station. To define the rawest type of data, we suppose the study 

region is divided into subregions with the same size, which is the smallest 

possible or suitable. The measurements taken in these subregions are called 

the original data. These data are the observation of a spatial variable. We 

can see the spatial distribution of the original data as an image of the 

phenomenon that has the best resolution possible.  
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Figure 2.2 - Data processing during their path from the sensors field to the base station.  

The network data were obtained by the spatially homogeneous clustering 

(left box) and ordinary clustering (right box). 

 

Collecting the original data is impracticable, since this means to take 

measurements in the whole study region.  However, the analysts are not 

usually interested in the raw data. Even if they had the original data, some 

summarization will be necessary to understand the phenomenon these data 

represent. The analysis goal determines the type of summarization that 

must be done. Suppose our interest is to detect zones with extreme values. 

If we measure temperature, for example, we want to detect cold and hot 

zones.  For luminosity measures, we are interested in dark and clear zones. 
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We define a zones image as the summarization of the original data that 

delimit the zones with extreme values (Figure 2.2). 

Sampling the original data is the first data processing. As the geosensor 

network is the sampling instrument, we call the resulting spatial sample as 

geosensor data. If the network is regularly deployed, we can see the spatial 

distribution of the geosensor data as a phenomenon image with a smaller 

resolution (Figure 2.2).  

Data aggregation is the second data processing. The geosensor data are 

aggregated in clusters and the resulting summary is sent to the base 

station. The spatial clusters and their summaries are what we define as 

network data. Figure 2.2 shows the network data produced by two 

alternatives of clustering: spatially homogeneous clustering and ordinary 

clustering. The two network data are two possible summaries of the 

geosensor data. To build the visualization of the network data as in Figure 

2.2, the base station has also to know the nodes position and which nodes 

compose each cluster.  

Considering the analysis goal is to identify zones with extreme values, we 

would like to have an adequate summary of the zones image. When we use 

a geosensor network to sample the original data and a cluster-based 

protocol to route this sample, we try to produce a summary of the zones 

image based on a subset of the original data (the geosensor data). In other 

words, the cluster-based protocol tries to reproduce a summarization of 

the phenomenon image just looking at a version of this image with a 

smaller resolution. Having these considerations in mind, the analysis of the 

quality of the network data must consider how difficult is to reproduce the 

zones image of a spatial dataset based on a sample of this dataset. 
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2.52.52.52.5         Assessing the Performance of the Spatially Homogeneous ClustersAssessing the Performance of the Spatially Homogeneous ClustersAssessing the Performance of the Spatially Homogeneous ClustersAssessing the Performance of the Spatially Homogeneous Clusters    

We have carried out simulation experiments to evaluate and compare the 

statistical quality of data summaries based on spatially homogeneous 

clusters and ordinary spatial clusters. Some results were not presented here 

for briefness.   

 

2.5.1    The simulated experiments The simulated experiments The simulated experiments The simulated experiments     

We have simulated datasets with spatial autocorrelation using a grid of 

10000 cells (100 x 100). For practical reasons, we have considered each cell 

as a square of side 1 meter. We refer these data as original data. These 

datasets were characterized by extreme zones, which are groups of cells 

with high values (clear zones) and groups of cells with low values (dark 

zones).  

The zones size was controlled by a scale parameter. Figure 2.1 presents the 

spatial distribution of a dataset simulated using a scale parameter equal to 

20. The left column of the Figure 2.3 presents some examples of original 

data that we have simulated using the values 5, 10 and 15 for the scale 

parameters. The higher the scale value is, the larger the zone size. For each 

value of the scale parameter, we have simulated 500 spatial datasets. 

The model adopted for the covariance function was the Gaussian model, in 

which the covariance value between two locations decreases with the 

squared distance between them. The data probabilistic model was the 

Gaussian with mean 100 and variance 2. These values were kept constant 

during all experiments. We have carried out the simulations of the spatial 

dataset using the package RandomFields (SCHLATHER, 2001) in the R 

environment (R_DEVELOPMENT_CORE_TEAM, 2005). 
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 Original Data Zones Image 

Scale 15 

  

 (A) (B) 

Scale 10 

  

 (C) (D) 

Scale 5 

  

 (E) (F) 

Figure 2.3 - Examples of original data and zones image for three scales. 
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Dark zones are clusters of cells with values between the 10% smallest and 

clear zones are clusters of cells with values between the 10% largest. To 

delimit these zones, we have used image classification techniques, 

generating the zones image (Figure 2.2, right upper corner). We have 

treated each spatial dataset as an image. Using the geographical 

information system SPRING (CAMARA et al., 1996), each image was 

segmented by a region growing algorithm (BINS et al., 1996). Posteriorly, 

we have classified the image segments into dark and clear zones using the 

supervised classification technique based on the Bhattacharya distance. We 

have accepted a classification result if it satisfied two conditions. First, the 

average value of the image cells classified as clear had to belong to the 

10% largest image values. Second, the average value of the image cells 

classified as dark had to belong to the 10% smallest image values. 

The result was the zones image. The right column of the Figure 2.3 

presents the zone images for the original data in the left column of the 

same figure. We have used these images to evaluate the ability of the 

clustering methods to identify the extreme zones. 

To sample the spatial datasets, we have deployed a geosensor network with 

100 nodes in a regular fashion, as illustrated by the black dots at the right 

side of the Figure 2.4. Each sensor node has an area of influence, which is 

the area around the node. In our experiments, we have defined the area of 

influence of a sensor node as the set of cells of which the node was the 

nearest node. The data collected by a sensor node were defined as the 



 51 

average of the values of the cells in its area of influence7. We refer to this 

sample as geosensor data.  

 

  

Zones image Geosensor data and network’s nodes 

Figure 2.4 - Zones image and geosensor data of the dataset in Figure 2.1. 

To choose the number of clusters to be used in the nodes partitions, we 

have adopted the expression proposed by Heinzelman et al. (2002).  This 

expression finds the optimal number of clusters that minimizes the total 

energy dissipated in a data transmission of the LEACH protocol. It involves 

radio energy model parameters and network parameters (area dimensions, 

number of nodes and cluster heads distance to the base station). The latter 

parameter depends on the base station position. Then, we have chosen this 

position so that base station and at least 75% of all nodes was less than 

100 meter apart. This is the radio range of commercial sensors platforms 

like Crossbow MICA2 mote8 and MoteIV Telos9, for example. In our 

experiments, the base station was placed on position (x=120; y=50) and 

                                                 
7 In REIS et al. (2007), we have adopted another definition for the geosensor data. The data 
collected by a sensor node were defined as the value of the cell in which the node was placed. 
8 http://www.xbow.com/ 
9 http://www.moteiv.com/ 
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its average distance to the nodes is 78.6 meter. Finally, adopting the radio 

energy model as in Heinzelman et al. (2002), the optimal number of 

clusters is six. 

To get the ordinary spatial clusters, we have simulated LEACH’s clustering 

procedure (HEINZELMAN et al., 2002). We have chosen the cluster heads 

randomly among all nodes, but constrained to a minimal distance of 30 

meter between them. This constraint tries to simulate the choice of cluster 

heads by LEACH-C (HEINZELMAN et al., 2002), avoiding to agglomerate the 

head nodes. To assemble the clusters, we have associated the remaining 

nodes to their nearest cluster head.  

The spatially homogeneous clusters were obtained by the SKATER 

procedure (ASSUNÇÃO et al., 2006). 

To each cluster k, we have calculated the cluster summary CMk as the 

average of the data of the nodes belonging to the cluster k. The set of CMk 

values of a dataset is the network data (Figure 2.2).  

We have defined the statistical quality of a cluster summary (SQk) using the 

following expression 

1

CM1 kN
ik k

k

ik ik

v
SQ

N v=

−
= ∑ ,                                      (2.1) 

where vik is the original data of the cell i that belongs to the union of the 

area of influence of all nodes of the cluster k ; Nk is the number of cells 

belonging to the area of influence of the cluster k. Since we have simulated 

values larger than zero, vik ≠ 0, for all i and k. The statistical quality 

measure SQk is the average of the absolute value of the relative errors of 

the cluster mean CMk. It measures how far the cluster summary CMk is 

from the original data, in average, when these original data are replaced by 

CMk. The smaller the values of SQk, the better the cluster summary CMk 
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represents the individual cell values. SQk is a measure of the local 

performance of the clusters summaries. 

Differently from the arrangement of clusters obtained by SKATER, there 

more than one possible arrangement if we use LEACH’s clustering 

algorithm. The clusters’ arrangement depends on the location of the 

chosen heads and, as result, this can affect the performance of LEACH’s 

clusters. Then, to minimize this problem, we have used 10 different cluster 

heads arrangements for each spatial dataset. To choose one of these 

arrangements, we have sorted them using their value for SQk
(max)

, which is 

the maximum value for SQk,. Then, we have chosen the arrangement that 

had the smallest value for SQk
(max)

. It is worth to note that this procedure 

favours LEACH’s clusters.  

To enable the comparison of the performance of both clustering proposals’ 

considering a given spatial dataset, we have summarized the SQk values,                

k = 1,2,…,6, for each dataset t, t = 1,2,3,…, 500, and calcuted the 

following ratio   

( )
( )

( )

( 1,2,..,6)

( )

( 1,2,..,6)

1, 2, 3, ..., 499, 500,,  

SH

k kt

OS

k kt

Ratio
t t

median SQ
SQ

median SQ

=

=

==            (2.2) 

where ( )SH

ktSQ and ( )OS

ktSQ are the values of the expression in (2.1) for the   

k-th cluster assembled by SKATER and LEACH, respectively, using the t-th 

dataset. If Ratio
tSQ < 1, for example, it means SKATER has performed better 

than LEACH, in median, considering the original data came from the 

dataset t.  
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2.5.2    The resultsThe resultsThe resultsThe results    

We have evaluated the SQk values of the spatially homogeneous (SH) and 

the ordinary spatial (OS) partitions. Figure 2.5 presents the boxplots10 for 

SQk values according to the scale parameter. The notch in the lateral 

borders of the boxplots works as a 95% confidence interval for the median 

(MCGILL et al., 1978). 

Spatial homogeneous clusters have overperformed LEACH’s ordinary 

clusters in all evaluated scales. SH clusters have had the smallest SQk 

values, in median, in addition to the smallest variability. As expected, the 

larger the scale parameter, the higher is the statistical quality of the 

clusters. 

The clusters produced by both clustering methods have a good statistical 

quality. The cluster means have had relative errors smaller than 10%, in 

average (SQk values smaller than 0.10)11. Analyzing these values, it is worth 

to remember the hard task of the network data when estimating the 

original data, as we have described in section 2.4. Moreover, as well noted 

by FRERY et al. (2008), SQk “is a ‘pessimistic’ measure”, since the original 

data is never available in practice. However, “it provides an idea of the 

error introduced by the whole observation process”. 

                                                 
10 The bottom and the top of the box represent the percentiles 25 and 75, respectively. 

Therefore, the box’s height is a measure of the data variability. The line drawn across the box 
represents the median and the points outside the dashed lines represent the outlier values. 
The maximum length of the dashed lines depends on the box’s height. If there are not outliers, 
the ends of the inferior and superior dashed lines represent the minimum and the maximum 
values, respectively (TUKEY, 1977).  

11 The values of SQk have been much smaller than the values obtained in REIS et. al (2007). 
This means that the way we use to define the geosensor data can affect the statistical quality of 
clustering procedures, as suggested by Prof. Alejandro Frery. 
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Figure 2.5 - Boxplots for SQk values (based on 500 x 6 values). 

 

The boxplots in Figure 2.6 summarize the results for comparison between 

SKATER and LEACH using the ratio of their median SQk values for each 

spatial dataset. Considering all simulated datasets, SKATER has got values 

for the statistical quality measure 10% to 30% better, in median, if 

compared to LEACH. Except by some outliers (less than 10 whatever the 

scale), SKATER has outperformed LEACH in most of the datasets.   
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Figure 2.6 - Boxplots for Ratio
tSQ values (based on 500 values). 

We have used the summaries CMk to classify the clusters into clear or dark, 

using a criterion similar to that used to produce the zones image. 

According to its CMk value, the cluster k was classified as clear (CMk value 

between the 15% largest values of the original data), dark (CMk value 

between the 15% smallest values) or intermediate (other CMk values).  We 

have adopted the cut point 15%, instead of the 10% used for the zones 

classification, because this value allowed for flexibility in the cluster 

classification procedure. A cluster having only some nodes out of the “10% 

zone” could still be classified as an extreme cluster (clear or dark).  
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Figure 2.7 presents the results of this classification for the two clustering 

methods applied to the geosensor data sampled from the original data in 

Figure 2.3 (scale parameter equal to 5, 10 and 15).  

 

Figure 2.8 presents the network data according to two clustering methods 

applied to the geosensor data of the Figure 2.4 (scale parameter equal to 

20). The black clusters are those classified as dark, the white clusters 

represent the clear clusters and the gray clusters are the intermediate ones. 

Comparing the zones image in figures 2.3 and 2.4 with the visualization of 

the network data in figure 2.7 and 2.8, we see the spatially homogeneous 

clusters could identify more extreme spatial zones than the ordinary spatial 

clusters. Spatially homogeneous clusters were able to identify zones even 

when they were small and the geosensor data did not seem to reveal many 

aspects of spatial autocorrelation (scale parameter equal to 5). 

 

2.62.62.62.6         Concluding RemarksConcluding RemarksConcluding RemarksConcluding Remarks    

Within a few years, miniaturized and networked sensors will have the 

potential to be embedded in several kinds of environments and allow a 

continuous monitoring (ELSON and ESTRIN, 2004). Geosensor networks will 

produce a revolution in our understanding of the environment by providing 

observations at temporal and spatial scales that are not currently possible. 

Deciding how these data will be routed to the base station is crucial, since 

data routing is an important consumer of energy, the most critical resource 

of the network. 

The main contributions of this chapter are twofold. First, we have proposed 

a data-aware clustering procedure that groups the nodes into spatially 

homogeneous clusters.  



 58 
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Figure 2.7 - Network data based on the original data in Figure 2.3.  

Spatial homogeneous clustering (left column) and ordinary spatial clustering 

(right column). 
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Spatially homogeneous clusters Ordinary spatial clusters 

Figure 2.8 - Network data based on the original data in Figure 2.4  

according the spatial homogeneous clustering and the ordinary spatial 

clustering. 

Second, we have compared our clustering proposal to the usual clustering 

procedure of cluster-based protocols. We have shown that spatially 

homogeneous clusters were able to produce data summaries with a higher 

statistical quality, improving the posterior statistical analysis. In addition, 

they get better extreme zones identification.  

 

2.72.72.72.7     An uAn uAn uAn updating notepdating notepdating notepdating note    

In this chapter, we have considered a sensor network regularly distributed 

over the study field. Frery et al. (2008) have extended our work by 

evaluating the effect of the distribution patterns for the sensors in the 

statistical quality of the aggregation estimates. They have used point 

process to simulate independence, attraction and repulsion of nodes.  

Their experiments have shown that the more repulsive the point process, 

the better the estimates. Similarly to our findings, they have observed that 

aggregating data according spatially homogeneous clusters produces better 

estimates of the real data than using the ordinary spatial clusters. 
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3 DISTRIBUTED DATA-AWARE REPRESENTATIVE CLUSTERING FOR 

GEOSENSOR NETWORKS DATA COLLECTION♦♦♦♦ 

Geosensor networks comprise small electro-mechanical devices that sample spatio-

temporal fields, collecting data and sending them to a remote base station by 

wireless communication (NITTEL and STEFANIDIS, 2005). These powerful 

instruments promise to revolutionize the environmental data collection, such as 

the monitoring of the wildlife or dangerous environments.  

 

The main goal of a geosensor network is to keep the network’s database updated 

while saving the limited nodes’ energy as much as possible.  

 

Since the wireless communication is the main consumer of the nodes’ energy, an 

alternative to reduce the energy consumption is to limit the nodes communication 

to a local neighborhood, building clusters of nodes. Then, clustering algorithms 

have gained an important role on the energy-efficient data collection in geosensor 

networks. They are the basis for the cluster-based data routing protocols (for 

example, Heinzelman et al. (2000) and its variations) and some schemes of spatial 

and spatio-temporal data suppression (for example, Kotidis (2005) and Tulone and 

Madden (2006), respectively).  

 

A cluster-based data routing protocol groups the neighboring nodes around a 

cluster head, which aggregates the data of the cluster members and sends the 

                                                 
♦ This chapter is an extended version of the work in REIS, I. A.; CÂMARA, G.; ASSUNÇÃO, R. 
M.; MONTEIRO, A. Distributed Data-Aware Representative Clustering for Geosensor Networks 
Data Collection. In: Brazilian Workshop on Real-Time and Embedded Systems (WRT 2008), 
10., Rio de Janeiro, RJ, Brazil. Proceedings. Rio de Janeiro: SBC, 2008. p. 77 -- 84. 1 CD-
ROM. 
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summary to the base station. In addition to localize the nodes communication, this 

strategy reduces the data volume traveling through the network.  

 

A scheme for spatio-temporal data suppression uses the temporal correlation 

among the readings of a same node and the spatial correlation among the 

observations of neighboring nodes to infer the expected behavior for the nodes’ 

data. The base station and the nodes agree on this behavior. The nodes send data 

to the base station only if these data differ from their expected behavior. To deal 

with the spatial part of the suppression scheme, an alternative is to cluster the 

nodes around a head node (for example, Kotidis (2005) and Tulone and Madden 

(2006), respectively).  

 

To meet the energy constraints of a geosensor network, a clustering algorithm 

must group the nodes using only localized messages (distributed clustering) 

(BASAGNI, 1999). The distributed clustering algorithms for sensor networks can be 

divided into two categories: ordinary clustering (Basagni (1999) and Heinzelman et 

al. (2002), for example) and data-aware clustering (Kotidis (2005) and Tulone and 

Madden (2006), for example). The difference between ordinary and data-aware 

clustering proposals is on the definition of the nodes’ neighborhood (REIS et al., 

2007). Ordinary clustering only considers the geographical proximity to define the 

nodes’ neighbors, whereas data-aware clustering constrains this definition, 

considering also the similarity among the data the nodes sense. 

 

Distributed clustering algorithms have two main tasks: to choose the head nodes 

and to associate the neighboring non-head nodes to the chosen heads. In the 

data-aware proposals, a non-head node joins the most similar neighbor head. If 

there is not a head in the neighborhood of a non-head node, it remains alone (a 

solitary node). The differences between the data-aware proposals are in the first 

task (heads choice). Despite of adopting different methods to choose the heads, 

the usual proposals have the same goal: to find a head node to represent each 
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associated node individually (a representative node) (KOTIDIS, 2005), acting as a 

nodes’ representative during the data collection.  

 

We look for a distributed data-aware clustering proposal that produces clusters’ 

representatives, that is, head nodes that are the result of an agreement among 

neighboring nodes. This agreement considers the interest of all participating 

nodes. By the interest of a node, we mean “to join its most similar neighbor”. In 

the current proposals, the chosen head cannot be considered a cluster’s 

representative, since the head choice considers the interests of the nodes 

individually. The nodes in these clusters do not have to be similar to each other.  

 

We believe a cluster built around a cluster’s representative produces more 

homogeneous data than a cluster built around a nodes’ representative. As a result, 

a cluster’s representative calculates data summaries that are better estimates for 

the data of its associated nodes (REIS et al., 2007).  

 

The main goal of this chapter is to present two distributed data-aware clustering 

algorithms that build clusters around clusters’ representatives: the Distributed 

Data-Aware Representative Clustering (DARC) and a data-aware version for the 

DCA (Distributed Clustering Algorithm) (BASAGNI, 1999), DA-DCA. In addition, we 

evaluate our hypothesis on the homogeneity of these clusters.  

 

DARC algorithm promotes a “head election” among neighboring nodes. They 

exchange information about their most similar neighbor. Then, a node chooses as 

its head the most often choice among its neighbors, including its own choice. This 

“election” is the result of the agreement among neighboring nodes and provides a 

cluster’s representative.  DA-DCA proposal adapts the neighborhood definition and 

the heads choice of the original DCA to consider the nodes’ data. 
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Our primary motivation to propose a novel distributed clustering algorithm is to 

provide the support for the spatial part of a scheme for spatio-temporal data 

suppression. In this scheme, the head uses cluster summaries to estimate the data 

its cluster members suppress. Then, we need to build more homogeneous clusters. 

Moreover, our proposal can provide a method to deal with failure issues inherent 

to data suppression schemes (SILBERSTEIN et al., 2007a). Since the resultant 

clusters are homogeneous, the data of a node that fails to deliver its message can 

be better estimated using the data of a non-failing node in its cluster.  

 

The remainder of this chapter is organized as follows. Section 3.1 describes the 

related work and section 3.2 presents DARC and DA-DCA proposals. Section 3.3 

describes the simulated experiments to evaluate the proposals and presents their 

main results. Finally, section 3.4 draws some concluding remarks. 

 

3.3.3.3.1111 Related Work Related Work Related Work Related Work    

One of the first proposals to build clusters of sensor nodes in a localized fashion 

has been the Distributed Clustering Algorithm (DCA) (BASAGNI, 1999). In DCA 

proposal, each node has a weight (for example, its energy level or its speed, in case 

of mobile nodes). A node also knows the weights of its neighbors and chooses the 

one, including itself, that has the biggest weight as its head. If a node chooses 

itself as a head, it broadcasts a message communicating its status and waits for 

the joining messages of the other nodes. Since DCA proposal does not involves the 

sensed data in the clusters building, it is classified as ordinary spatial clustering 

(REIS et al., 2007). Our data-aware version for the clusters building algorithm of 

the DCA proposal, DA-DCA algorithm, constrains the neighborhood definition of 

the DCA and adapts the weights used in the heads choice. 

 

Heinzelman et al. (2000) have proposed a simpler distributed clustering algorithm 

as part of a cluster-based data routing protocol. In the LEACH’s clustering 

algorithm, each node “elects” itself as a cluster head according to a user-defined 
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probability. The chosen nodes broadcast a message communicating their head 

status. A non-head node listens to the heads’ messages and chooses the nearest 

one as its head node. After associating itself to a cluster head, the non-head node 

just sends data to its cluster head, which aggregates the data of its cluster’s 

members and sends the summary to the base station. As in DCA, the clustering 

procedure of LEACH only considers the geographical proximity of the nodes in its 

neighborhood definition. Then, it is also classified as ordinary spatial clustering. 

We consider the LEACH’s algorithm as one of the simplest and least costly 

proposals for distributed clustering. Then, we use the results of the LEACH’s 

clustering algorithm as a basis for comparison. 

 

Our work also relates to the data-aware clustering proposals of Kotidis (2005) and 

Tulone & Madden (2006).  Kotidis (2005) has proposed an algorithm to select a 

small set of representative nodes (a snapshot) as part of a scheme of spatial data 

suppression to answer queries. Nodes monitor their neighbors’ data messages and 

estimate the coefficients of a linear regression model to predict their neighbor’s 

data. To define their neighborhood, nodes broadcast their sensed values and listen 

to the broadcast of their neighbors. Using its neighbors’ data, a node estimates a 

simple linear regression model for each neighbor. Using the estimated models, a 

node predicts their neighbors’ data and compares them with the received data. If 

the predicted and the real data of a neighbor differ by less than a threshold θSNAP, 

this neighbor enters to the candidates list of the node. After completing their 

candidates lists, nodes broadcast them and listen to their neighbors’ lists. A node 

chooses as its representative the neighbor node with the longest candidates list. 

Once the representative nodes are chosen, only they answer the queries. In the 

snapshot maintenance, non-representative nodes continuously monitor their 

representatives’ data. Whenever they differ from the data the non-representative 

predicts, the node looks for another representative, repeating the initial steps.   
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Representative nodes also appear in the spatial version of PAQ, a scheme for 

temporal data suppression using time series models (TULONE and MADDEN, 

2006). PAQ’s algorithm simplifies the Kotidis’ proposal. It evaluates the similarity 

of two nodes’ data only comparing their difference to a similarity threshold θPAQ. 

Furthermore, nodes do not exchange their list of similar neighbors to choose their 

representatives. Once the node has its list of similar neighbors, it includes its own 

ID in this list and chooses as its representative (the head) that node with the lowest 

ID. If a node is a head, it broadcasts a message communicating its status. A non-

head receives a head message and checks if the head ID belongs to its list of 

heads. If so, it sends a joining request to the head node. Otherwise, it keeps 

listening to the heads’ messages until the joining period ends. After that, if a node 

did not receive messages of the heads in its list, it remains alone and looks for a 

head in the next time period (clusters maintenance). As in the Snapshot algorithm, 

only the representative nodes (heads) send data to the base station.  

 

Our DARC algorithm has been inspired in PAQ’s and Kotidis’ algorithms to build 

snapshots. We have adopted the simple evaluation of the nodes’ similarity of PAQ 

and adapted the “neighbors’ conversation” in Kotidis’ proposal. In DARC 

algorithm, neighboring nodes exchange information about their most similar 

neighbor. Then, a node chooses as its head the most often choice among its 

neighbors. This transforms the “neighbors’ conversation” into “neighbors voting” 

and the heads choice in a real “heads election”. In addition, we propose an 

adjusting time period, which gives to the head nodes without a cluster (solitary 

nodes) a last chance to get a cluster at the end of the nodes association phase.  

 

Differently from Snapshot and PAQ’s clustering algorithms, DARC and DA-DCA 

algorithms promote the heads’ rotation in their clusters maintenance phase. This 

procedure distributes the costly tasks of being a head among all the nodes in the 

network.  
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To build the initial clusters, PAQ’s algorithm spends up to two local messages per 

node and Kotidis’ algorithm spends up to six messages, whereas DARC and DA-

DCA algorithms spend up to four messages per node. To maintain the clusters, 

DARC and DA-DCA spend from zero to three messages per node, whereas PAQ’s 

and Kotidis’algorithms spend up to two and six messages per node, respectively. 

 

The goal of the representatives in Kotidis’ and PAQ’s proposals is to represent each 

associated node individually. To represent a single associated node, the 

representative does not need the data of the other associated nodes. In our 

proposals, the representative nodes (the heads) are clusters’ representatives. They 

compute the average of the data of all nodes in the cluster and the resulting value 

estimates these nodes’ data. This estimation procedure allows for spatial 

suppression as well as for local monitoring of the cluster area. 

Reis et al. (2007) have concluded that spatially homogeneous clusters (SHC) 

produce data summaries that are better estimates of the summarized data if 

compared with the summaries based on  ordinary clusters. SHC are the result of a 

partition of the sensor field that has maximum internal homogeneity regarding the 

values of monitored variable. To get such clusters, the authors have used the 

SKATER (Spatial ‘K’luster Analysis by Tree Edge Removal). SKATER is a centralized 

data-aware clustering procedure, since it is necessary to know the values of all 

nodes in the network to maximize the clusters internal homogeneity. In the sensor 

network context, SKATER can be considered as an information fusion system 

(NAKAMURA et al., 2007). Regarding the communication costs, a centralized 

fusion system may outperform a distributed one (TENNEY and SANDELL JR., 

1981). Therefore, we use SKATER’s clusters to have the lower bounds for the 

evaluation measures: the internal homogeneity of the cluster and the prediction 

error of the cluster average. 

 

 

 



 68 

3.23.23.23.2 Our Proposals for Distributed Data Our Proposals for Distributed Data Our Proposals for Distributed Data Our Proposals for Distributed Data----Aware Clustering  Aware Clustering  Aware Clustering  Aware Clustering      

From now on, we reserve the term “similar neighboring nodes” or just “neighbors” 

to denote those geographical neighbors that collect similar data. As “geographical 

neighbors”, we mean those nodes that can communicate to each other.  

 

In this chapter, we define the similarity of two values vi and vq as di = |vi - vq|. The 

value vi is considered to be similar to vq if di�θ(S)i, where  θ(S)i is a similarity 

threshold. In the DARC and DA-DCA algorithms, θ(S)i = θ x MADi, where MADi is 

the mean absolute deviation of the measures of the node that evaluates the 

similarity between its data and its neighbor’s data. MAD is a measure of data 

variability and represents the typical data deviation. MAD is less costly the usual 

standard deviation, since it does not require the square and square root 

operations12. The definition for θ(S)i allows for standardizing the difference between 

two sensed data. This makes easier the choice of the similarity parameter θ, since θ 

represents the maximum number of typical data deviations that separates two 

similar values. For instance, we consider as similar two sensed data apart from 

each other at most four typical deviations, that is, θ=4. The value of MADi is 

estimated during a learning phase.  

 

3.2.13.2.13.2.13.2.1    Distributed DataDistributed DataDistributed DataDistributed Data----Aware Representative Clustering (DARC) Algorithm  Aware Representative Clustering (DARC) Algorithm  Aware Representative Clustering (DARC) Algorithm  Aware Representative Clustering (DARC) Algorithm      

The main idea of DARC algorithm is to get an agreement among neighboring 

nodes to choose one of them as their cluster head. This agreement results from 

the exchange of local messages among neighboring nodes. Figure 3.1 describes 

                                                 
12 In REIS et al. (2008), we have used the standard deviation instead of MAD. In this chapter, 
we have acknowledged the suggestion of Prof. Alejandro Frery and adopted MAD, since it is a 
less costly function than the standard deviation. 
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the types of messages that nodes receive or send during the two phases of the 

DARC algorithm: clusters building and maintenance. In the first phase, non-head 

nodes send three local messages and head nodes have to send one more local 

message. In the clusters maintenance, nodes send from zero to three local 

messages. A typical message has the format <message head, receiver’s ID, 

sender’s ID, message content (c)>. 

 

1) <hello, IDi , vi> : from node IDi to its geographical neighbors. This message 

contains the measured value vi. If vi is missing (vi=MS), this is a message from 

a head node. 

2) <near, IDvni> : from node IDi to geographical neighbors. This message 

contains the ID of the nearest neighbor of node i, IDvni. 

3) <join, IDCH , IDi> : from node IDi to head IDCH. This message contains a join 

request. 

4) <head, IDi> : from head IDi to its geographical neighbors. This message 

contains the head status of node IDi. 

5) <abandon,IDCH ,IDi> : from node IDi to head IDCH. This message contains an 

abandoning notification. 

6) <decline,IDi> : from head IDi to geographical neighbors. This message 

contains a declining notification. 

7) <data, IDi ,IDq , vi> : from node IDq to node IDi. This message contains a 

data value. 

8) <headdata, IDi ,avgi> :  from head IDi to the members of  its cluster. This 

message contains the average value of the cluster. 

Figure 3.1 - Types of messages the nodes exchange during the network operation. 

 

The clusters’ building begins after the learning phase. Figure 3.2 presents a 

pseudo-code describing the steps of the clusters’ building and Figure A.1 in the 

Appendix presents a description of DARC as a distributed algorithm. The total time 

period for clusters building is divided into four time periods:  
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Phase A - Building the initial clusters  

 

A.1) - Node IDi broadcasts a message <hello, IDi ,c=vi> to all nodes 

within its radio range (neighbors candidates). 

A.2) - Node IDi receives messages from its neighbors candidates, 

<hello,IDq,c=vq>,q≠i.   If |vi-vq| � (θ x MADi), {Ni} � {Ni} ∪ IDq . 

A.3) - Node IDi chooses its neighbor with the smallest value for |vi-vq| as 

its head candidate, IDq, and 

     - broadcasts a message  with its candidate, <near,c=IDq>, to all its 

neighbors;  

     - initializes its list of possible heads,    {CH(list)
i} � IDq . 

A.4) - Node IDi receives messages from its neighbors with their head 

candidates, <near,c=IDq>, q≠i.  

       -  if IDq∈{Ni},  {CH
(list)

i}�{CH(list)
i}∪IDq.  

A.5) - Node IDi chooses the most often node(s) in {CH(list)
i} and excludes 

the other nodes from the list {CH(list)
i}; 

        -  if none of the nodes in {CH(list)
i} is the most often, {CH(list)

i} ���� {Ni}. 

         

A.6) - If IDi ∈{CH
(list)

i}, node IDi  

        - sets CHi �  IDi ; 

        - broadcasts a message with its head status, <head, c=IDi>;  

        - initializes its counter as a head node, CH.counti � 1;  

        - waits for joining requests (step A.8). 

 

Figure 3.2 - Cluster building phase of the DARC algorithm. (to be continued) 
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A.7) - If  CHi ≠ IDi  (node IDi is not a head): 

A.7.1) - It receives messages from head candidates IDh:  

A.7.1.1) - if IDh ∈ {CH
(list)

i},        {CH
(cand)

i} � {CH(cand)
i} ∪ IDh ;   

A.7.1.2) - if ( IDh ∉ {CH
(list)

i} AND  IDh ∈ {Ni} ), {CH
(wait)

i} � {CH(wait)
i} ∪ IDh . 

A.7.2) - After the association time (∆TA), node IDi 

          - chooses the nearest member of {CH(cand)
i} as its head and  

          - sets CHi �  IDCH, the ID of the chosen head node : 

                 - If {CH(cand)
i}=∅, node IDi chooses the nearest member of 

                 {CH(wait)
i} as its head ;  

                 -  If {CH(wait)
i}=∅, node IDi sets  CHi�IDi and remains alone (a 

                 solitary node). 

          - sends a join message to the node in CHi, <join,IDCH,IDi>, 

         (except when CHi=IDi ). 

A.8) If CHi = IDi  (node IDi is a head): 

A.8.1) - It receives the join messages, <join,IDi,IDq> : 

   - if IDq ∈ {Ni},  

       - sends message <data,IDi IDq,c=∅>  to node IDq; 

       - sets {CLi} � {CLi} ∪ IDq. 

A.8.2) - It receives the messages <head,IDh> from other heads and sets 

{CH(wait)
i} � {CH(wait)

i} ∪ IDh ; 

A.8.3) - At the end of the joining time (∆TJ), if {CLi} = ∅ : 

          - node IDi sends a join message, <join, IDq, IDi>, to the first 

          neighbor head of its list {CH(wait)
i}, IDq; 

         -  if {CH(wait)
i} = ∅, node IDi remains alone (a solitary node). 

    A.8.4) - At the end of the adjusting time (∆TAD), if the head IDi did not 
receive any join message, it remains alone (a solitary node). 
 

Figure 3.2 - Cluster building phase of the DARC algorithm (conclusion) 
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1) Talking time (∆TT): nodes exchange messages with their sensed values 

(steps A.1 to A.4). During the talking time, there is a time period to 

constrain the neighborhood (∆TN), where ∆TN < ∆TT. 

2) Association time (∆TA): nodes choose their heads and decide their status 

(head or non-head). Heads broadcast their status and all nodes listen to 

the messages (steps A.5, A.6, A.7.1). 

3) Joining time (∆TJ): non-head nodes send joining messages and heads 

listen to them (steps A.7.2, A.8.1 and A.8.2). 

4) Adjusting time (∆TAD): Head nodes without a cluster have a last 

opportunity to join other heads executing steps A.8.3 and A.8.4. All 

head nodes keep listening to the joining messages, while non-head 

nodes switch their radios to the sleep mode until the end of the 

adjusting time. 

 

At the end of the initial clustering, nodes have one of three conditions: head, non-

head or solitary node. A head node has at least one associated non-head node. A 

non-head belongs to one cluster and a solitary node does not belong to any 

cluster. 

 

We explain DARC proposal using the example in the Figure 3.3A to 3.3E. Figure 

3.3A presents a sensor network, the nodes’ ID (inside the circles) and the value 

they sense (v) in a time period t. We represent the spatial variation of the process 

being monitored painting the nodes according to the value sensed: yellow nodes 

for v<5 and red nodes for v≥5. The edges represent the radio links among the 

nodes. The similarity threshold is θ=4 and si = 1, for i = 1,2,3,4,5,6,7,8,9. 

 

From steps A.1 to A.3, each node discovers its geographical neighbors, refines this 

neighborhood discarding those nodes with non-similar data (Figure 3.3B) and 

chooses the most similar neighbor to be its head candidate (neighbors inside of 

the rectangles). Note the node ID6 is within the radio range of node ID1, but it is 
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not part of the neighbors’ list of ID1. This is because their data are not similar, 

since |v1 – v6| > θ. In step A.4, nodes communicate the chosen heads to the 

neighbors and receive their choices. Then, the nodes build the list {CH(list)}, which 

contains their own chosen heads and the choices of their neighbors that belong to 

the list {Ni} (Figure 3.3C). The {CH
(list)} of node ID4, for example, has only its 

chosen head (ID5), since the heads chosen by its neighbors (ID1 and ID8) does not 

belong to its neighbors list.  

 

The agreement among nodes’ choices occurs at step A.5, when each node refines 

its list {CH(list)} keeping only the most “popular” node(s) among the chosen heads 

(Figure 3.3C). If there is not a most often node in the original {CH(list)} or if the 

original {CH(list)} has only node’s choice (for example, nodes ID4, ID6 and ID7), the 

refined {CH(list)} is the node’s choice. If the node’s ID belongs to the its refined 

{CH(list)} (step A.6), it sets its status to head, broadcasts its  status and goes to step 

A.8. In Figure 3.3C, nodes ID1, ID2, ID5, ID8 and ID9 set their status as heads. The 

non-head nodes (ID3, ID4, ID6 and ID7) follow the instructions in the step A.7. They 

listen to the heads’ messages and build two lists of nodes: {CH(cand)}, which has 

heads belonging to the refined {CH(list)} list (inside of the ellipses) and {CH(wait)}, 

which has the other neighbor heads (Figure 3.3D) . The head nodes also build the 

list CH(wait). At the end of clustering period, non-head nodes choose the most 

similar head in the CH(cand). If CH(cand) is empty, they choose the first head in the 

waiting list CH(wait). If CH(wait) is empty, they become solitary nodes and keep this 

status until the maintenance phase.  

 

The head nodes follow the step A.8. They receive the joining requests of the non-

head nodes and the announcements of neighbor heads, keeping the ID of the 

head nodes in the waiting list CH(wait).  If a head node does not receive any joining 

request, it uses the list CH(wait) to join another head in its neighborhood. In the 

example of Figure 3.3, node ID1 does not receive any joining message, since it is 

not chosen as head by any node. Then, in the adjusting time period, it uses its 
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CH(wait) to join the node ID5. If the CH
(wait) is empty, the node changes its status to a 

solitary node and keeps this status until the maintenance phase, when it tries to 

join a cluster.  
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{N1} = { ID2, ID3, ID5  }

{N2} = { ID1, ID3, ID5 }

{N3} = { ID1, ID2, ID6, ID7 }

{N4} = { ID5, ID6 }

{N5} = { ID1, ID2, ID4 }

{N6} = { ID3, ID4, ID8  }

{N7} = { ID3, ID9  }

{N8} = { ID6, ID9  }

{N9} = { ID7, ID8  } 

{N1} = { ID2, ID3, ID5  }

{N2} = { ID1, ID3, ID5 }

{N3} = { ID1, ID2, ID6, ID7 }

{N4} = { ID5, ID6 }

{N5} = { ID1, ID2, ID4 }

{N6} = { ID3, ID4, ID8  }

{N7} = { ID3, ID9  }

{N8} = { ID6, ID9  }

{N9} = { ID7, ID8  }  

(A) Nodes’ neighborhood and sensed data v 

(B) Neighbors lists and the 

nearest neighbors, inside of 

the rectangles 

Figure 3.3 - Example for explaining DARC proposal (to be continued). 

 

 

Figure 3.3E presents the resulting clusters. The initial nine nodes are grouped into 

four clusters and there is no solitary node. The strategy of keeping a waiting list 

and having an adjusting time period avoids a large number of solitary nodes. 

Although it is a simple example, it is worth to note that the resulting DARC’s 

clusters have preserved the original spatial division into small and large sensed 

values (yellow and red nodes). 

 

If we apply the PAQ’s grouping algorithm (TULONE and MADDEN, 2006) to the 

network of Figure 3.3A, we get only one cluster ({ID1, ID2, ID3, ID5}) and five 
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solitary nodes. Since PAQ does not have an adjusting time period, it produces a 

larger number of solitary nodes. 

 
 

{CH(list)
1} = { ID2, ID5, ID1, ID2, ID1 } {CH(list)

1} = { ID2,ID1 }        

{CH(list)
2} = { ID1, ID2, ID5, ID2, ID1 }         {CH(list)

2} = { ID2,ID1 }        

{CH(list)
3} = { ID2, ID2, ID1 } {CH(list)

3} = { ID2 }   

{CH(list)
4} = { ID5 } {CH(list)

4} = { ID5 }             

{CH(list)
5} = { ID1, ID2, ID5 , ID1 , ID5 }        {CH(list)

5} = { ID5,ID1 }

{CH(list)
6} = { ID8 } {CH(list)

6} = { ID8 } 

{CH(list)
7} = { ID9 } {CH(list)

7} = { ID9 }            

{CH(list)
8} = { ID9 , ID8, ID8 } {CH(list)

8} = { ID8 }           

{CH(list)
9} = { ID8 , ID9, ID9 }   {CH(list)

9} = { ID9 }

{CH(list)
1} = { ID2, ID5, ID1, ID2, ID1 } {CH(list)

1} = { ID2,ID1 }        

{CH(list)
2} = { ID1, ID2, ID5, ID2, ID1 }         {CH(list)

2} = { ID2,ID1 }        

{CH(list)
3} = { ID2, ID2, ID1 } {CH(list)

3} = { ID2 }   

{CH(list)
4} = { ID5 } {CH(list)

4} = { ID5 }             

{CH(list)
5} = { ID1, ID2, ID5 , ID1 , ID5 }        {CH(list)

5} = { ID5,ID1 }

{CH(list)
6} = { ID8 } {CH(list)

6} = { ID8 } 

{CH(list)
7} = { ID9 } {CH(list)

7} = { ID9 }            

{CH(list)
8} = { ID9 , ID8, ID8 } {CH(list)

8} = { ID8 }           

{CH(list)
9} = { ID8 , ID9, ID9 }   {CH(list)

9} = { ID9 }  

 

{CH(cand)
1} = {      } ; {CH(wait)

1} = { ID5,ID2 } 

{CH(cand)
2} = {      } ; {CH(wait)

2} = { ID1,ID5 } 

{CH(cand)
3} = { ID2 } ; {CH(wait)

3} = { ID1 } 

{CH(cand)
4} = { ID5 } ; {CH(wait)

4} = {   } 

{CH(cand)
5} = {       } ; {CH(wait)

5} = { ID1,ID2 }  

{CH(cand)
6} = { ID8 } ; {CH(wait)

6} = {   } 

{CH(cand)
7} = { ID9 } ; {CH(wait)

7} = {   }      

{CH(cand)
8} = {       } ; {CH(wait)

8} = { ID9 } 

{CH(cand)
9} = {       } ; {CH(wait)

9} = { ID8 } 

{CH(cand)
1} = {      } ; {CH(wait)

1} = { ID5,ID2 } 

{CH(cand)
2} = {      } ; {CH(wait)

2} = { ID1,ID5 } 

{CH(cand)
3} = { ID2 } ; {CH(wait)

3} = { ID1 } 

{CH(cand)
4} = { ID5 } ; {CH(wait)

4} = {   } 

{CH(cand)
5} = {       } ; {CH(wait)

5} = { ID1,ID2 }  

{CH(cand)
6} = { ID8 } ; {CH(wait)

6} = {   } 

{CH(cand)
7} = { ID9 } ; {CH(wait)

7} = {   }      

{CH(cand)
8} = {       } ; {CH(wait)

8} = { ID9 } 

{CH(cand)
9} = {       } ; {CH(wait)

9} = { ID8 }  

 

(C) Lists of head candidates and chosen heads 

(inside of the ellipses 
(D) Candidates and waiting lists 

Figure 3.3 (continuation) -  Example for explaining DARC proposal (to be continued) 
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Figure 3.3 - Example for explaining DARC proposal (conclusion). 
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3.2.23.2.23.2.23.2.2    DADADADA----DCA (DataDCA (DataDCA (DataDCA (Data----aware Distributed Clustering Algorithm)aware Distributed Clustering Algorithm)aware Distributed Clustering Algorithm)aware Distributed Clustering Algorithm)    

The differences between DA-DCA and DCA (BASAGNI, 1999) are the 

neighborhood and the weights definitions, since these definitions in DA-DCA 

consider the sensed data. The weight wi of a node IDi is a function of its data and 

its neighbors’ data. The weight wi is the average of the absolute differences |vq-vi|, 

where IDq∈{Ni} and {Ni} is the list of neighbors of the node IDi. The smaller the 

value of wi, the more similar to its neighbors the node IDi is. Then, a node chooses 

among its neighbors, including itself, the one that has the smallest weight to be its 

head.  DA-DCA does not require a similarity threshold as in DARC, SNAP and PAQ, 

which can be interesting for the network’s user. 

  

We use the example of the Figure 3.3A to present the DA-DCA. The weights of the 

nodes ID1 to ID9 are 1.33, 1.33, 2.50, 3.00, 2.00, 2.67, 3.00, 1.50 and 1.50, 

respectively. Then, according to neighbors list in the Figure 3.3B, the choices of 

nodes ID1 to ID9 are ID1, ID2, ID2, ID5, ID1, ID8, ID9, ID8 and ID9, respectively. Since 

the nodes ID1 and ID2 have the same weight, the nodes ID3 and ID5 have to break 

the tie choosing the most similar head candidate. The nodes ID1, ID2, ID8 and ID9 

are the chosen heads. The final clusters are {ID1,ID5}, {ID2,ID3}, {ID4}, {ID8,ID6} 

and {ID9,ID7}. Except by the solitary node ID4, the resulting clusters are equal to 

DARC’s clusters.  

 

3.2.33.2.33.2.33.2.3 Clusters maintenance  Clusters maintenance  Clusters maintenance  Clusters maintenance     

Once DARC or DA-DCA algorithms builds the initial clusters, the nodes start the 

clusters maintenance phase. The goal of this phase is to adapt the initial clusters to 

data dynamics and to allow for rotating the heads.  

 

To avoid a long period as a head, the nodes maintain two counters: a CH.count 

and a rest.count. The first one stores the number of sequential time periods the 

node is a head and is initialized at the beginning of each period as a head. The 
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second counter stores the number of sequential time periods the node is not a 

head and is initialized when a head node turns its status to non-head. The node 

updates its counters CH.count or rest.count whenever it acts as a head or a non-

head, respectively. At each sampling period, the head node checks its counter and 

decides to remain as a head or not. Solitary nodes use their “rest period” counter 

to accept or not a joining request of another node. The maximum size of the 

sequential period as a head (TasCH) is a user-defined parameter as well as the 

maximum proportion of the sampling time periods a node can be a head (PasCH). 

The size of the rest period (Trest) depends on TasCH and on                                    

PasCH: Trest = TasCH x (1/ PasCH - 1). For instance, if we set a node can be a head for up 

to 25% of the sampling time periods and for up to 10 sequential time periods, the 

rest period is Trest = 10 x (1/ 0.25 - 1) = 30 time periods.  

 

The clusters maintenance depends on a scheme for temporal data suppression 

adopted by the nodes to decide when to send data to their heads. A simple 

alternative for temporal data suppression is to send vt, the sensed data at time 

period t, only if | vt – vL|> ε, where vL is the last data sent to the head and ε, ε > 

0, is a suppression threshold defined by the user. In this section, we describe the 

clusters maintenance without concerning about any particular temporal data 

suppression scheme.  

 

The clusters maintenance is divided into three sequential time periods: sampling, 

evaluation and searching. During the sampling time, non-heads and solitary nodes 

sense the environment and decide to send or not their data according to the 

adopted scheme for temporal suppression. The heads sense the environment and 

waits for data messages from their associated nodes. 

 

During the next time period (evaluation), the cluster head evaluates changes in 

cluster homogeneity. For those members that decided to send data in the 

sampling period, the head evaluates the impact of their changes in the cluster 
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homogeneity. To do this, the head calculates a measure of the homogeneity of the 

cluster’s members.  

 

The homogeneity of a dataset is usually measured by a coefficient between a 

measure for data dispersion and a measure for the typical data value. The smaller 

the data dispersion in relation to the typical data value, the more homogeneous 

the data set is. There are some alternatives for measuring data dispersion such as 

the the standard deviation, the median absolute deviation13 and the mean 

absolute deviation14. The correspondent measures for the typical data value are the 

average, the median and the average, respectively. The median and the mean 

absolute deviation have the advantage of being less costly than the standard 

deviation, since they do not use the functions square and square root. Then, 

suppose we adopt one of these alternatives to measure the clusters’ homogeneity. 

We refer to this choice as H.  

 

To evaluate the impact of their changes in the cluster homogeneity, the head node 

calculates H using the old values of the cluster’s members (Hold) and compares it 

with the H value based on the new values (Hnew). If the ratio Hnew/Hold is greater 

than a threshold δH (δH > 1), the head considers the impact of the node in the 

cluster homogeneity as large and excludes the node of the cluster by sending it a 

declining message. In fact, this evaluation procedure must be iterative, similarly to 

the stepwise procedure to select variables to be part of regression model (DRAPER 

and SMITH, 1998). That is because the head has to evaluate all possible 

                                                 
13 The Median Absolute Deviation of values vi, i=1,2,..,N, is defined as 

( )1,2,..., 1,2,...,,onde ( )i N i i N imedian v v v median v= =− =� � .  
14 The Mean Absolute Deviation of values vi, i=1,2,..,N, is defined as 

1 1

,onde 
N N

i i

i i

v v N v v N
= =

− =∑ ∑ .  
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combinations of members to define the set of them whose preserve the internal 

homogeneity of the last time period, that is, (Hnew/Hold) < δH. For example, let us 

consider the cluster {ID1,ID2 ID3,ID4,ID5}. Suppose nodes ID1, ID3 and ID4 have sent 

their values to the head. So, we have to evaluate the following subsets : 

{ID2,ID5,ID1}, {ID2,ID5,ID3}, {ID2,ID5,ID4}, {ID2,ID5,ID1,ID3}, {ID2,ID5,ID1,ID4}, 

{ID2,ID5,ID3,ID4}. Since nodes ID2 and ID5 have suppressed their values, they are in 

all subsets. Indeed, we are looking for the largest subset of nodes that preserve the 

old cluster homogeneity. Then, the head starts the procedure evaluating the 

largest subsets. In the worst case, the head wil have to evaluate (2m-2) subsets, 

where m ≥1, is number of nodes that have sent their values to the head15. In the 

previous examples, m = 3 and the maximum number of subsets to evaluate will be 

23 -2 = 6 subsets, which are listed above. If the head does not find a subset of 

members that preserve the old cluster homogeneity, it dissolves the cluster, sends 

a declining message to its members and becomes a solitary node. 

 

Once having the subset of nodes which preserves the cluster homogeneity, the 

head computes the cluster average. After evaluating the changes in the value of its 

cluster average using the adopted temporal scheme, the head checks its time 

period as a cluster head and decide to dissolve or not the cluster. During the 

evaluation time period, non-head nodes wait for messages from the head. If a 

non-head node receives a declining message from its head, it becomes a new 

solitary node. During the evaluation time period, the old solitary nodes turn their 

radios to the sleep mode, since DARC and DA-DCA algorithms reserve this period 

to the communication between the cluster head and its associated nodes.  

 

                                                 

15 We have to evaluate 
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During the next time period (searching), old and new solitary nodes have the 

chance to join a cluster or to become a cluster head. The head nodes receive the 

joining requests of the solitary nodes and evaluate the impact of the new node in 

the cluster homogeneity. Similarly to the evaluation period, a new node only is 

accepted in a cluster if its inclusion preserves the cluster homogeneity.  

 

It is worth to note that only cluster heads and solitary nodes are allowed to send 

messages to base station. In fact, combining DARC or DA-DCA algorithm and a 

scheme for temporal data suppression would produce a scheme for spatio-

temporal data suppression. Since evaluating this kind of scheme is not our goal in 

this chapter, we will only describe cluster maintenance phase, not carrying out any 

evaluation of performance in this chapter.  

 

3.33.33.33.3 Assessing the Performance of the Clustering AlgorithmsAssessing the Performance of the Clustering AlgorithmsAssessing the Performance of the Clustering AlgorithmsAssessing the Performance of the Clustering Algorithms    

This section presents the main results of the simulated experiments we have carried 

out to provide a preliminary evaluation of the performance of the clustering 

algorithms DARC, DA-DCA, SNAP and PAQ.  

 

3.3.1 The experiments3.3.1 The experiments3.3.1 The experiments3.3.1 The experiments    

We have simulated datasets according to a Gaussian random field using a grid of 

10000 cells (100 x 100), using the same procedure described in Chapter 2 (Section 

2.5). As in REIS et al. (2007), we refer to these data as original data. These datasets 

are characterized by zones, which are groups of cells with similar values. The 

zones’ size relates to the spatial autocorrelation and is controlled by a scale 

parameter. The higher scale value, the larger the zones size. To each value of the 

scale parameter (5, 10, 15, 20, 30 and 40), we have simulated 1000 spatial 

datasets with the same mean (100) and variance (10).  To sample the original data, 

we have deployed a geosensor network with 100 nodes in a regular fashion. As in 

Chapter 2, each sensor node has an area of influence, which is the area 
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around the node. In our experiments, we have defined the area of influence 

of a sensor node as the set of cells of which the node was the nearest 

node. The data collected by a sensor node were defined as the average of 

the values of the cells in its area of influence16. We refer to this sample as 

geosensor data.  

The nodes have been grouped according to the four clustering algorithms under 

evaluation: our proposals (DARC and DA-DCA), Kotidis’ proposal (SNAP) and PAQ.  

We have set the radio range equal to 20, which represents the double of the 

distance between two adjacent nodes in the regular grid. The idea is to localize the 

nodes communication to save energy. The user sets a short radio range to be used 

in most time periods, saving the entire range for an emergency, as a long time 

period without communication with local neighbors, for instance.  

 

The data-aware clustering proposals we consider here define different similarity 

measures to constrain the geographical neighborhood of the nodes. To make 

these algorithms comparable, we have adjusted their similarity thresholds. The 

similarity measure of SNAP is defined as îq iqv v− , where 
iqv is the value sensed by 

the q-th neighbor of the node IDi and îqv  is the value predicted for q-th neighbor of 

the node IDi  using the regression model that node IDi  estimates for its q-th 

neighbor. The similarity measure of SNAP is the absolute value of the prediction 

error of a regression model.  To build the SNAP’s regression models, we have run 

the learning phase for 100 times periods.  

 

                                                 
16 In REIS et al. (2008), the data collected by a sensor node were defined as the value of the 
cell in which the node was placed. 
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Since DARC uses a statistical property (the mean absolute deviation) of the nodes’ 

data to define its similarity threshold (θ(S)i= θ x MADi), we have adopted an 

equivalent procedure to define the similarity thresholds of the other proposals. For 

PAQ and SNAP, we have set θ(PAQ)i= θ(S)i and θ(SNAP)iq=θ(S)i, respectively
17. The 

estimate for MADi has been calculated during the SNAP learning phase. To 

calculate θ(S)i, we have adopted a fixed value for θ (θ=4), since we are not 

interested in studying the effect of similarity threshold on the performance of 

algorithms. Increasing the value of θ will increase the clusters size but decrease the 

clusters homogeneity.  

 

For each clustering algorithm, we have calculated the number of resulting clusters 

(nC) and the number of solitary nodes (nS). To each cluster k, we have calculated 

the cluster size (nk), the Median of the Absolute Value of the Relative Error of the 

cluster average (MAREk) and the Coefficient of Variation (CVk), which are defined 

by the expressions 

1,...,

 - CM

k

ik k
k i n

ik

v
MARE median

v=

 
=   

 
   and                              (3.1) 

  
kSd

,
CM

k
k

CV =                                                 (3.2) 

where vik is the data sensed by the node IDi of the cluster k ; CMk and Sdk are the 

average and the standard deviation of the data sensed by the members of the 

cluster k, respectively. Since we have simulated values larger than zero, vik ≠ 0, for 

all i and k. MAREk measures the prediction error of cluster average CMk as an 
                                                 
17 In REIS et al. (2008), we have adopted the standard error of a 95% confidence interval for 

iqv  

as the similarity threshold for SNAP. 
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estimate for the data of the cluster k members, whereas CVk measures the internal 

homogeneity of the cluster k.  

To produce the bounds of comparison for MAREk and CVk, we have used the 

clustering algorithms LEACH and SKATER, as we have discussed in section 3.1. 

LEACH and SKATER should produce the upper and the lower bounds to MAREk, 

respectively. The same reasoning is valid for CVk. Therefore, for each dataset, we 

have used the number of clusters produced for a given clustering proposal to 

define the number of clusters to be assembled using LEACH and SKATER. Then, we 

have calculated the ratio between the median of the MAREk values of a given 

clustering proposal and the median of the MAREk values of the corresponding 

LEACH’s clusters. Similarly, we have calculated the MAREk ratios in relation to 

SKATER’s clusters. We have used the same procedure to obtain the CVk ratios.    

3.3.23.3.23.3.23.3.2    The resultsThe resultsThe resultsThe results    

To summarize the results for MAREk values of the evaluated data-aware clustering 

proposals in the 1000 simulated datasets, we have prepared the Figure 3.4.  

 

The mean values based on DARC’s clusters have got the smallest prediction error, 

in median, in addition to the smallest variability. DA-DCA and SNAP algorithms 

have got very similar performances, even though they use very different rules to 

cluster the network’s nodes. The simplest clustering proposal, PAQ, has got the 

poorest performance. 

 

Since LEACH’s clustering algorithm assembles ordinary spatial clusters, we 

expected the clustering proposals evaluated here could improve the LEACH’s 

clusters performance. In other words, we expected their MAREk and CVk values 

were smaller than LEACH’s values. On the other hand, we expected they were 

larger than SKATER’s values, since the centralized clustering procedure of SKATER 

is able to produce more homogeneous partition of the nodes than a distributed 

procedure. 
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Figure 3.4 - Boxplots for MAREk values of the evaluated clustering proposals according to the scale parameter. 

Legend: DR, DA, S and P stand for DARC, DA-DCA, SNAP and PAQ, respectively.  
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To compare the evalatued clustering proposals with LEACH and SKATER, we have 

prepared figures 3.5 to 3.8. Since the results for CVk are quite similar to the results 

for MAREk results, we have opted for using only the figures summarizing MAREk 

results to discuss the results for both measures. 

 

Analyzing figures 3.5 to 3.8, we can draw the following conclusions:  

 

(a) DARC algorithm improved the clusters internal homogeneity compared to 

the LEACH’s algorithm (smaller values for CVk, in median). In addition, the 

prediction error of the average of DARC’s clusters is smaller than the LEACH’s 

clusters error (smaller values for MAREk, in median);  

 

(b) the performance of DARC’s clusters is the most similar to the performance 

of SKATER’s clusters (MAREk and CVk for DARC’s clusters have been the 

nearest values to values of SKATER’s clusters, in median);  

 

(c) except by DARC, the other clustering proposals could not improve the 

LEACH’s ordinary clustering.  

 

As expected, the values for MARE and CV of all clustering proposals decrease as 

the spatial correlation (zones size) becomes higher, especially if the scale 

parameter is larger than 15. However, for the SKATER algorithm, these values 

decrease faster. That is because neither the shape nor the size of SKATER clusters is 

constrained by the radio range. Furthermore, the geosensor data is able to capture 

the spatial patterns as the spatial correlation increases and SKATER is very sensitive 

to this (REIS et al., 2007). 
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Figure 3.5 - Boxplots for MAREk values of DARC, LEACH (LC) and SKATER (SK) according to the scale parameter. 
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Figure 3.6 - Boxplots for MAREk values of DA-DCA, LEACH (LC) and SKATER (SK) according to the scale parameter. 
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Figure 3.7 - Boxplots for MAREk values of SNAP, LEACH (LC) and SKATER (SK) according to the scale parameter. 
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We have made a simple evaluation of the energy cost involved in clusters 

formation by analyzing the number of clusters assembled, the size of these clusters 

and the number of solitary nodes. Having few but large clusters is important to 

save energy, since it minimizes the number of the nodes with the most costly 

tasks: the heads and the solitary nodes, in this order. 

 

Figure 3.9 presents the summaries for the number of clusters, the size of the 

clusters and the number of solitary nodes, respectively, for each clustering proposal 

according to the spatial scale. 

 

Whereas PAQ built few clusters (13, in median, Figure 3.9A) but left many nodes 

alone (19 to 20, in median, Figure 3.9C), SNAP clustered almost all nodes (41 to 

42 clusters, in median, Figure 3.9A) at the cost of having set many heads.  DARC 

and DA-DCA algorithms have built 26 and 22 to 25 clusters (in median, Figure 

3.9A), respectively, which we consider to be a trade-off between the number of 

clusters and their size. 

 

SNAP algorithm produced the smallest number of solitary nodes, followed by DA-

DCA algorithm (0 and 1, respectively, Figure 3.9C). SNAP has also produced the 

smallest clusters (with 2 nodes, in median, Figure 3.9B). On the other extreme, 

PAQ has left the largest number of nodes without a cluster (19 to 20, in median) 

and built the largest clusters (6 nodes, in median). In the middle, DARC and DA-

DCA built clusters with 3 and 4 nodes, respectively. Considering the network 

configuration and the radio range we have adopted, the maximum number of 

nodes in a cluster is 13. 
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Figure 3.9 - Simplified analysis of the energy costs of the proposals according to the scale parameter (based on 1000 simulations). 

(A) median number of clusters; (B) median cluster size and (C) median number of solitary nodes.
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It is worth to note that the clusters size, the number of clusters and the number of 

solitary nodes have remained almost constant despite of the increasing in the 

spatial autocorrelation of the original data. As an exception to this behavior, the 

number of nodes left alone by DARC algorithm has been sensitive to the increasing 

of spatial autocorrelation (Figure 3.9C). When the geosensor data have not been 

able to capture the spatial autocorrelation of the original data (for the smallest 

spatial scales), the adjusting phase of DARC has not been able to decrease the 

number of solitary nodes. However, this number has decreased as the spatial 

autocorrelation increased.  

  

3.4 Final Remarks3.4 Final Remarks3.4 Final Remarks3.4 Final Remarks    

In this chapter, we proposed two data-aware clustering algorithms, DARC and   

DA-DCA. Our goal has been to increase the clusters homogeneity in comparison to 

the usual proposals. Clusters more homogeneous should produce summaries that 

would be better estimates for the cluster members’ data. 

 

DARC’s clusters had the largest internal homogeneity and produced averages with 

the smallest prediction errors. Furthermore, the evaluation experiments have 

shown DARC can cluster almost all nodes without overloading an excessive 

number of them with the head tasks. On the clustering costs, DARC builds the 

initial clusters spending from three to four local messages. To maintain the 

clusters, nodes spend from zero to three local messages. In SNAP algorithm 

(KOTIDIS, 2005), for instance, the nodes must monitor their neighbors’ data to 

estimate the regression models during clusters building and maintenance, besides 

they spend up to six messages to build the clusters. 

 

Although DA-DCA has produced less costly scenarios than DARC’s scenarios (larger 

number of smaller clusters and less solitary nodes), DARC’s clusters have got a 

better performance (larger internal homogeneity and averages with smaller 

prediction errors). 
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A future work includes to associate DARC and DA-DCA algorithm to a scheme for 

temporal data suppression. This will produce a scheme for spatio-temporal data 

suppression for geosensor data collection. Therefore, we will be able to evaluate 

the clusters maintenance.  

 

Although we have designed our proposals to meet the requirements of a spatio-

temporal data suppression scheme, it can be adapted for a cluster-based data 

routing protocol. Moreover, despite of the fact that we have supposed a static 

network in this chapter, one can adapt DARC and DA-DCA algorithms to the 

mobile case, since they are procedures that use only the neighbors within the radio 

range of the nodes. 



 94 

 



 95 

 

4 SUPPRESSING TEMPORAL DATA IN SENSOR NETWORKS USING A 

SCHEME ROBUST TO ABERRANT READINGS♦♦♦♦ 

 
4.4.4.4.1111    IntroductionIntroductionIntroductionIntroduction    

Sensor networks are a powerful instrument for data collection, especially for 

applications like habitat and environmental monitoring. These applications often 

require continuous updates of the database at the network’s root. However, 

sending continuous reports would quickly run out the limited energy of the nodes. 

A solution for continuous updating without continuous reporting is to use data 

suppression (SILBERSTEIN et al., 2007a).  

 

To define a data suppression scheme, nodes and base station have to agree on an 

expected behavior for the nodes’ readings. Thus, nodes only send reports to the 

base station when their values do not fit to the expected behavior, which is used 

to predict the suppressed data.  

 

Model-driven data collection (CHU et al., 2006) defines the mean of a node’s 

observations as their expected behavior and models this mean using temporal or 

spatio-temporal correlations.  

 

A temporal suppression scheme uses the correlation among the readings of a same 

node to build the expected behavior for the nodes’ readings (TULONE and 

MADDEN, 2006). A spatio-temporal suppression scheme also considers the 

                                                 
♦ This chapter is corrected version of the manuscript submitted to the International Journal of 

Distributed Sensor Networks (IJDSN). The manuscript is under the second revision. 
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correlation among the observations of neighboring nodes (SILBERSTEIN et al., 

2007a).  

Suppression schemes are an alternative to improve the reactivity of a sensor 

network, which is defined as the ability of a network to react to its environment 

providing only relevant data (CARDELL-OLIVER et al., 2005). Instead of  changing 

the sampling rates according to the sampled values and sending all collect data to 

the base station as in CARDELL-OLIVER (2005), a suppression scheme collects data 

using a constant rate. However, it only sends data if they represent a deviation 

from the behavior agreed by nodes and base station. 

 

Usually, suppression schemes define an absolute error measure to evaluate the 

deviation between sensed data and their expected behavior. This produces data 

collection schemes that are sensitive to aberrant readings. These outlying values 

can be the result of a temporarily malfunctioning of a particular sensor or due to 

some intervention on the environment on which the network is operating and it 

does not have any relation with the monitored variables. Sometimes, aberrant 

readings can be the result of an expected change in the sensed values. For 

instance, solar radiation measurements often suffer the effect of temporary clouds. 

In this case, a reduction in the radiation values is expected and, perhaps, non-

interesting to the network user.  

 

Sensors measuring environmental variables can produce such erroneous or 

nonsense readings (BRANCH et al. (2006), KOTIDIS et al. (2007), PALPANAS et al. 

(2003) and SUBRAMANIAM et al. (2006)), particularly in outdoor applications 

(SZEWCZYK et al. (2004) and TATESON et al. (2005)).  In monitoring networks 

with low energy constrains, such as the regular weather stations, the nodes 

transmit or record the aberrant readings, which are identified and deleted in the 

base station. However, for a sensor network, transmitting nonsense values means 

to waste valuable resources. 
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In this chapter, we propose a temporal suppression scheme that is robust to 

aberrant readings. Our proposal is based on the detection of outliers and their 

posterior classification into change-points or aberrant readings. We consider the 

sequence of data collected by a node as observations of a temporal process. The 

probabilistic distribution of this process at each time period is used to infer about 

the expected behavior of the observations. An outlier is an observation that 

presents a small probability to belong to the distribution at the current time 

period.  An outlier reading may suggest a change in the expected value for the 

time series or it may be an aberrant reading.  

 

To detect outliers from a time series, we have adapted the proposal in YAMANISHI 

and TAKEUCHI (2002). We have inserted our version as part of a suppression 

scheme for data collection in sensor networks, the TS-SOUND scheme (Temporal 

Suppression by Statistical OUtlier Notice and Detection). After detecting an outlier, 

TS-SOUND classifies it into a change-point or an aberrant reading. In the former 

case, the node sends data to the base station. Otherwise, the node suppresses its 

data. 

 

We have designed TS-SOUND for applications that are not interested in aberrant 

readings, since they represent a failure in data sensing or processing. Usually, these 

erroneous measurements occur at random, isolated or clustered. If they remain, 

this means malfunctioning and suggests a non reliable node.  

 

TS-SOUND scheme adopts a procedure to avoid detecting an aberrant reading as a 

change-point. Furthermore, even if this misdetection occurs, TS-SOUND does not 

send the aberrant reading to the base station. 

 

In this chapter, we claim and demonstrate that our proposed scheme for temporal 

suppression data is robust to aberrant readings. Furthermore, considering the 

trade-off between energy consumption and data quality, TS-SOUND has 
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outperformed the model-based suppression schemes we have considered in this 

chapter (PAQ (TULONE and MADDEN, 2006) and exponential regression 

(SILBERSTEIN et al., 2007a)) and also the simplest data suppression scheme, VB 

scheme (SILBERSTEIN et al., 2007a). The prediction error measures the quality of 

the data sent to the base station. Since the data transmission is the most 

important energy consumer, we use the suppression rates as a proxy for the 

energy consumption. To evaluate TS-SOUND scheme, we have run evaluation 

experiments with real and simulated data. The real data have come from several 

sources and presented different behaviors. 

 

The remainder of this chapter is organized as follows. Section 4.2 presents a TS-

SOUND overview. In section 4.3, we describe the related work and the framework 

for suppression schemes proposed in SILBERSTEIN et al. (2007a). Section 4.4 

describes SDAR algorithm (YAMANISHI and TAKEUCHI, 2002), which allows for 

the on-line estimation of time series parameters. In addition, it describes the 

procedure in (YAMANISHI and TAKEUCHI, 2002) to detect outliers, how we have 

adapted it to be part of our proposed suppression scheme and how TS-SOUND 

deals with classifying the outliers into change-points or aberrant readings. In 

section 4.5, we present TS-SOUND protocol and frame it as a suppression scheme 

according to the proposal in SILBERSTEIN et al. (2007a). Section 4.6 describes the 

evaluation experiments and section 4.7 presents their results using real and 

simulated data. Finally, section 4.8 discusses the experiments results and section 

4.9 presents some future directions. 

 

4.4.4.4.2222    TSTSTSTS----SOUND overview SOUND overview SOUND overview SOUND overview     

Techniques for outlier detection have been proposed in communities such as 

Statistical Process Control (for example, FRISÉN (2003) and POLLAK and 

SIEGMUND (1991)), Data Mining, Database and Machine Learning (for example, 

HODGE and AUSTIN (2004) ; MUTHUKRISHNAN et al. (2004) ; RAMASWAMY et 

al. (2000) ; YAMANISHI and TAKEUCHI  (2002)). 
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In Statistical Process Control (SPC), the goal is to monitor a process initially “in-

control” and raise an alarm when this process is considered to be “out-of-control” 

as soon as possible. Often, the “in-control” state of the process is a predefined 

condition: nominal values for the monitored parameters and their tolerance 

bounds. To raise the alarm, SPC uses procedures to detect outliers.  

 

For TS-SOUND, the “in-control” state is the probabilistic distribution of the 

monitored variable at the last time period.  If the process is “in-control” during a 

time interval, the sensor readings follow the same probabilistic distribution along 

this interval and different values are caused by random fluctuation around an 

expected value. Then, we can suppress these readings. We consider the process is 

“out-of-control” if the expected value of this distribution changes. After the 

change, a new “in-control” state is defined. The change’s relevancy is a user-

defined parameter. 

 

As in the SPC techniques, TS-SOUND uses the outlier occurrence to infer if the 

process is “out-of-control”.  To detect outliers, TS-SOUND adapts the technique in 

YAMANISHI and TAKEUCHI (2002), which has been proposed to detect outliers 

from a time series. TS-SOUND employs an algorithm that considers the temporal 

dependence of the time series to update the parameters of the probability 

distribution at each new sensor reading (on-line estimation). This algorithm is 

called SDAR (Sequentially Discounting Auto-Regressive) (YAMANISHI and 

TAKEUCHI, 2002). SDAR combines the last parameters’ updates with the new 

sensor reading to produce the new parameters’ updates. SDAR uses a discounting 

factor to control the weight of the new sensor data in the updates’ values. The 

outliers are detected as deviations from the data distribution. 

 

In a time series, an outlier can suggest a distribution change-point or an aberrant 

reading. We can distinguish a change-point from an aberrant reading if we 
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compare the time series values before and after the outlier, examining, for 

instance, the time series plot (Figure 4.1).  The aberrant points appear as the 

“peaks” or “spikes” of the time series plot. The time series has similar behaviors 

before and after the occurrence of aberrant readings. On the other hand, after a 

change-point, the time series changes its behavior. Then, a data suppression 

scheme must update the database at the base station only when change-points 

occur. 

 

To distinguish change-points from aberrant readings, TS-SOUND opens a post-

monitoring window whenever it detects an outlier. During this time interval, the 

node goes on collecting data and updating the estimated parameters. At the end 

of this time window, TS-SOUND compares the collected values with the 

distribution before and after the detected outlier. This outlier is classified as a 

change-point if the post-monitoring data are considered to be: 1) discrepant 

readings in relation to the distribution before the outlier; 2) non discrepant 

readings in relation to distribution after the outlier. If TS-SOUND classifies the 

detected outlier as a change-point, it summarizes the data collected during the 

post-monitoring and sends the result to the base station.  

 

We have adopted a post-monitoring window for two reasons: a) to be able to 

distinguish change-points from aberrant readings. It avoids sending the latter ones 

to the base station; b) to allow for capturing the value of the new expected 

behavior through the summary of the collected values. 

 

The base station uses the last sent data as an estimate for the node’s readings until 

it receives a message with new data. Thus, for each node in the network, the base 

station stores a sequence of summaries and uses this time series as an estimate for 

the real node’s time series. Section 4.5 describes TS-SOUND suppression scheme in 

detail.  
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Figure 4.1 -   Outliers in a wind speed time series (black dots). 

Source: weather station of the University of Washington, USA, October 2006. We have inserted the aberrant readings to 

produce this figure. 
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4.4.4.4.3 3 3 3 Related WorkRelated WorkRelated WorkRelated Work    

Recently, some protocols for data suppression in sensor networks have proposed 

to use statistical models to predict the nodes’ data at the base station reducing the 

amount of communication inside the network. This approach is called model-

driven data suppression (CHU et al., 2006).  

 

The main idea in CHU et al. (2006) is to keep synchronized two probabilistic 

models: one at base station and other at the nodes. The model parameters are 

estimated in a learning phase. Based on these identical models, nodes and base 

station make the same predictions on the data to be collected. Then, the node 

collects the actual data and compares them to its prediction. If the difference 

between the real and predicted values is greater than a user-defined error bound, 

the node sends its data to the base station. Otherwise, the node suppresses the 

collected data. 

 

A similar idea appears in TULONE and MADDEN (2006). PAQ protocol makes 

predictions based on a time series model, the third-order autoregressive model, 

AR(3). Given a time period t, the predicted value in t is written as a linear 

combination of the last three observations before t. PAQ uses two predefined error 

bounds to monitor the prediction error, which is defined as the absolute difference 

between the real and the predicted value. When the prediction error is greater 

than ευ, PAQ considers the observation as an outlier and sends it to the base 

station. If the prediction error is smaller than ευ but it is greater than εδ  (εδ < ευ), 

PAQ opens a monitoring window. During the next APAQ time periods, the node 

goes on collecting data, predicting their values, monitoring outliers and sending 

them to the base station. At the end of the monitoring window, PAQ counts how 

many observations have had prediction errors greater than ευ  or greater than εδ 

but smaller than ευ. If this sum is greater than a threshold a (a ≤ APAQ), PAQ 

decides to relearn the four model parameters. Then, PAQ calculates their new 

values and sends them to the base station. A variation of  PAQ, called in 
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SILBERSTEIN et al  (2007a) as exponential regression (EXP), uses the observation in 

the time  period (t -1) in a simple linear regression to predict the observation in t. 

Thus, EXP has to estimate two model parameters.  

 

It is worth to mention that neither PAQ nor EXP distinguish a change-point from 

an aberrant reading. Once they detect an outlier reading, the node sends the 

observation to the base station, even if it is an aberration.  

 

4.4.4.4.3.13.13.13.1 Temporal Suppression Schemes Temporal Suppression Schemes Temporal Suppression Schemes Temporal Suppression Schemes    

Silberstein et al. (2007a) defined a general framework for suppression schemes. 

This framework makes easier the comparisons among data suppression schemes.  

 

The nodes in the network are classified into “updaters” and “observers”. A 

suppression link describes the suppression/reporting relationship between an 

updater and its observer. The set of suppression links within the sensor network 

defines a suppression scheme.  

 

In a simple suppression scheme, all the network nodes are updaters. These 

updaters collect data and decide to send them (or not) to the observer node, 

which is the base station. To produce a report tr  to its observer, the updater uses 

an encoding function fenc. To decode the updater report, the observer uses a 

decoding function. 

  

The vector tX represents the data of the updater node at time period t and the 

vector tX̂  represents the data as calculated by the observer node at same time 
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period18. The suppression link maintains tX and tX̂ synchronized by evaluating a 

function t t
ˆ(X ;X )g . The function g returns the loginal true value if tX̂ is within a 

user-defined error tolerance (ε) of tX .  

 

In Value-Based (VB) suppression scheme, for instance, the encoding and decoding 

functions are defined, respectively, by  

enc
' ',   if  > 

,            otherwise

t t VBt t
f

x x x x ε − −
= 

⊥  and                                     (4.1) 

( 1)

( 1)

'if

if

+        =  
,

,           

ˆ - 
ˆ

ˆ
t t t

t

t t

t tx r r x x
x

x r
−

−


= 

=⊥
                                             (4.2) 

where tx  is a component of the vector tX , t’ is the last time the updater sends a 

message to its observer and the symbol ⊥  represents data suppression. The value 

'tx  is what the observer knows about its updater at time period t. If the relative 

difference between the current updater value tx  and 'tx , the g function, is 

greater than error bound εVB, the updater produces a report 't t tr x x= − and 

sends it to the observer node. Otherwise, no message is sent ( tr =⊥ ). The observer 

computes its value ˆtx  by adding the received report tr  to its old value t-1x̂ . If the 

updater does not send a message, the observer updates ˆtx  by repeating the old 

value. 

 

PAQ and exponential regression have also been framed as temporal suppression 

schemes. Although PAQ also has a proposal for spatio-temporal suppression 

                                                 
18 The authors use a vector to represent the data of a node because this node can have more 
than one value to send to the base station. That is the case of PAQ suppression scheme, for 
example. 
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(TULONE and MADDEN, 2006), we just consider its temporal version in this 

chapter. The expressions in (4.3) and (4.4) reproduce the encoding functions of 

PAQ and EXP, respectively, 

enc

, , ,   if  ( )

                 if  ( )

                otherwise

t t t t

tf x
α β γ η


= 
⊥

modelRelearn

outlier   .                                  (4.3) 

enc

,            if  ( )

                 if  ( ) .

                otherwise

t t

tf x
α β


= 
⊥

modelRelearn

outlier                                        (4.4) 

In (4.3), tα , tβ , tγ and tη are the coefficients of the AR(3) model adopted by 

PAQ scheme and, in (4.4), tα and tβ  are the coefficients of the simple linear 

regression model adopted by EXP scheme. The functions modelRelearn and 

outlier enclose the g function of PAQ and EXP schemes. As in VB scheme, it 

also evaluates the error between real and predicted values. 

 

We classify our TS-SOUND proposal as a model-driven approach for temporal 

suppression (SILBERSTEIN et al., 2007a). TS-SOUND models the mean of the 

monitored variable and uses it to decide if an observation is an outlier of the 

current data distribution. However, the model runs only at the nodes, not at the 

base station, being not necessary to keep synchronized models as in the other 

model-driven proposals. We frame TS-SOUND approach as a temporal suppression 

scheme in section 4.5. 

 

4.4.4.4.3.23.23.23.2    Outliers detection in a sensor networkOutliers detection in a sensor networkOutliers detection in a sensor networkOutliers detection in a sensor network    

The problem of detecting outliers in a sensor network has gained importance in 

proposals such as in BRANCH (2006), KOTIDIS et al. (2007), PALPANAS et al. 

(2003) and SUBRAMANIAM et al. (2006). The proposal in KOTIDIS et al. (2007) 

removes outlier readings from the data aggregation  and  makes them available to 

the monitoring application. In SUBRAMANIAM et al. (2006), the authors detect 
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outliers within a sliding window that holds the last W values of the sensor data. To 

estimate the data distribution, they use nonparametric models. Moreover, they 

report the outlier readings in a hierarchical structure, using the union of the 

outliers coming from multiple sensors. Branch et al. (2006) propose a generic 

distributed algorithm that accommodates many nonparametric methods to detect 

outliers such as “distance to the k-th nearest neighbor” and “average distance to 

the k nearest neighbors”. Nodes use one of these techniques to find out their local 

outliers. Then, they exchange information about these local outliers with their 

neighboring nodes to find out global outliers. Palpanas et al. (2003) use kernel 

density estimators to approximate the data distribution at each sensor node. As 

SDAR algorithm in YAMANISHI and TAKEUCHI (2002), the kernel density 

estimation allows for adjusting itself to the input data distribution, as this 

distribution changes overtime. The proposal in PALPANAS et al. (2003) assumes a 

heterogeneous sensor network, in which few sensor nodes are more powerful than 

the other sensors in the network. The detection of outliers is performed by these 

empowered nodes, which combine the models of two or more sensor nodes in 

this task. The authors discuss the trade-off among data accuracy, number of 

updates and the size of estimation models in some application scenarios. However, 

they do not provide evaluation experiments to show how this would work on real 

data. 

  

Differently from the proposals described above, our proposal to detect outliers 

does not require communication among sensor nodes, since we have treated only 

the temporal aspect of the data suppression in this chapter. However, some of 

these proposals can be an interesting basis for a future spatio-temporal version of 

TS-SOUND scheme. 
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4.4.4.4.4444    Detecting outliers from a time series Detecting outliers from a time series Detecting outliers from a time series Detecting outliers from a time series     

In this section, we present the procedure in YAMANISHI and TAKEUCHI (2002) to 

detect outliers from a time series and our proposal for adapting it to the constrained 

environment of a sensor network. 

 

We consider the sequence of the data sensed by a sensor node, {Xt , t=1,2,3…} , as a 

time series. 

 

The autoregressive (AR) model is the simplest model to represent the statistical behavior 

of a time series. In AR(k), the autoregressive model of order k, the observation at time t, 

Xt, is written  as a combination of the last k past observations as following   

 

1 1 2 2( ) ( ) ... ( ) ,   t t t k t k tX X X Xµ ρ µ ρ µ ρ µ ε− − −= + − + − + + − + k=1,2,3,…,t-1    (4.5) 

 

where µ is the mean of Xt, ρk is the autocorrelation of order k and εt is a noise term 

following a Gaussian distribution with zero mean and variance 2
εσ . 

 

To simplify the calculations in the sensor nodes, we have adopted the AR(1) 

model. From now on, we use this model to present the approach in YAMANISHI 

and TAKEUCHI (2002). 

 

If we use an AR(1) model to represent the time series, the probability density 

function of Xt, given Xt-1, is  

 

( )
2

1
2

1 1
| ; exp

2
t

t
tt

t
t

t t

X w
p X X

π
θ

σσ
−

  −
 = −  
   

,                               (4.6)  

 

where 1 1
    ( -  )t tt

t
tw µ X µρ −= + is the prediction for Xt using the AR(1) model, 

1 1 0
t tt C Cρ =  is the autocorrelation between Xt and Xt-1, ( )

2

0 1 1
t t ttC Cσ ρ= − , 0

tC  is the 
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variance of Xt, 1
tC  is the covariance between Xt and Xt-1 and ( )1, ,t t t t

µθ ρ σ=  is the 

parameters vector.  In other words, [Xt|Xt-1] follows the Gaussian distribution with 

mean  tw  and variance ( )
2tσ . 

 

4.4.4.4.4444.1 The Yamanishi and Takeuchi’s proposa.1 The Yamanishi and Takeuchi’s proposa.1 The Yamanishi and Takeuchi’s proposa.1 The Yamanishi and Takeuchi’s proposal to detect outliers l to detect outliers l to detect outliers l to detect outliers     

Yamanishi and Takeuchi (2002) adopted the AR model to represent the time series.   

 

To estimate the parameters in θ and, as a result, the value for ( )1| ;t
t

t tp X X θ− , 

Yamanishi and Takeuchi (2002) proposed the Sequentially Discounting AR (SDAR) 

algorithm. The goal of SDAR is to learn of the AR model and provide the on-line 

estimation of θ, which is updated at each new observation Xt.  A discounting factor 

r controls the weight given to the new observation Xt in the estimation of θ.  

 

SDAR has two main steps: initialization and parameters updating. In the first step, 

SDAR sets 0 0 0 0 0

0 1 1, ,  and µ C C ρ σ , which are the initial values for 0 1 1, ,  and t t t t t
µ C C ρ σ , 

respectively.  The initial values for 0,
t t

µ C  and 1

t
C  can be defined by the user or 

calculated using a learning sample.  

 

The second step of SDAR is parameters updating. At each time t, the node collects 

a new observation Xt and, for a given value of r, 0 ≤ r ≤ 1, the parameters are 

updated as following:  
1

(1 )ˆ ˆ
t t

t
r r Xµ µ

−
= − + ,                                                           (4.7) 

 1
, 0,1.(1 )ˆ ˆ ( )( )ˆ ˆ

j j

t t t jt

t t j
jr r X XC C µ µ

− −

−
= + =− − −  ,               (4.8) 

1

1

0

ˆ
ˆ

ˆ

t
t

t
C

C
ρ = ,                                                                           (4.9) 

1 1
ˆ ( )ˆˆ ˆ

tt t t
tw Xρ µ µ−

= − + ,                                                  (4.10) 
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( ) ( ) ( )
222 11 ˆ( )ˆ ˆt t

t
t

wXr rσ σ −= + −− .                                     (4.11) 

 

The discounting factor r enables SDAR to deal with nonstationary time series.  

 

Since SDAR updates the parameters at each time t, it produces a sequence of 

probability densities { pt , t=1,2,3…}, where pt is the probability density function in 

(4.6) specified by the parameters updated by the SDAR algorithm at time t.  

 

To detect outliers, the authors have proposed to evaluate each observation Xt using 

the sequence { pt , t=1,2,3…} and the score function 

[ ]1 1 1

1
2

11( ) ln ( ) ln
2 2

t t t t t

t
tX w

score X p X
σ σ π

− − −

− −  
= − = −   

  
          (4.12) 

 

Intuitively, this score measures how large the probability density function pt has moved 

from pt-1 after learning from Xt. A high value for ( )tscore X indicates Xt is an outlier with 

a high probability.   

 

To detect change-points, Yamanishi and Takeuchi (2002) proposed to use the average 

of the T last values of ( )tscore X , T > 1, to construct a time series Yt. Then, SDAR 

algorithm is applied on Yt to construct a sequence of probability densities qt and 

[ ]1( ) ln ( )t t tscore Y q Y−= −  is calculated. Then, they define a function ( )Score t , which is 

the average of the T’ last values of ( )tscore Y , T’>1, and use ( )tscore Y to detect change-

points in the time series. 

 

It is worth to note there are many calculations involved in the proposal in YAMANISHI 

and TAKEUCHI (2002). Moreover, they have not made clear how to distinguish aberrant 

readings from change-points.  
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4.4.4.4.4.24.24.24.2    The outlier detection in the TSThe outlier detection in the TSThe outlier detection in the TSThe outlier detection in the TS----SOUND schemeSOUND schemeSOUND schemeSOUND scheme    

TS-SOUND scheme uses the detection of outliers to decide whether a node must 

suppress its data or it must not. If an outlier is detected, the node opens a post-

monitoring window to decide if the outlier is a change-point or an aberrant reading. In 

the first case, the node sends data to the base station. 

 

Yamanishi and Takeuchi (2002) have not considered power limitations in the 

calculations. Therefore, using a logarithm operator in ( )tscore X  has not been a 

concern. However, in the constrained environment of a sensor node, using the 

logarithm function can be a costly operation. Then, to meet the requirements of a 

scheme for data collection in sensor networks, we have simplified the definition of 

( )tscore X  by evaluating the distance between Xt   and 
1ˆ t

w
−  using the function  

1

11

ˆ
( )

ˆ

t

t

t

tt

X w
SD X

σ

−

−−

−
= ,                                             (4.13) 

where ˆ
t

σ represents the estimate for the standard deviation of Xt.  

 

Note that 1( )ttSD X− is the absolute value of a normalized score. In fact, we can see 

1( )ttSD X− as part of G statistic19 proposed in (GRUBBS, 1969) to detect outliers in a 

static dataset. As the original ( )tscore X  in (4.12), 1( )ttSD X− evaluates how far Xt is 

from 1ˆ t
w

− , which is the prediction for Xt using the AR(1) model in t-1. Then, a high 

value for 1( )ttSD X− also indicates Xt  is an outlier of the distribution in t-1 with a high 

probability.  

 

                                                 
19 G statistics is defined as the maximum of the absolute value of the normalized scores of 
observations in a static dataset. 
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As in YAMANISHI and TAKEUCHI (2002), we evaluate the 1( )ttSD X− function over a 

time window composed by the T past time periods, where T ≥ 1.  However, instead of 

using a T-averaged score, we simplify the calculations and use the sum of the T past 

values of 1( )ttSD X− . Then, at each time period t, we calculate the score Zt as  

1

1 1
1 1

ˆ
( )

ˆ

i

i i

t t

i t T i t T

i
t i

X w
Z SD X

σ

−

− −
= − + = − +

−
= =∑ ∑                             (4.14) 

 

The expression for Zt compares the values of {Xi, i=t-T+1, …, t} with 1ˆ t
w

− , which is the 

predicted value for them if they come from the p distribution in t=i-1. Large differences 

indicate the values of {Xi, i=t-T+1, …, t} have a small probability to belong to the p 

distribution in t=i-1. The sum over the T past time periods in Zt allows for capturing 

smooth changes in the average of the time series.  

 

If the value of Zt is greater than a pre-defined threshold, Xt is considered to be an 

outlier. However, Xt can be an aberrant reading or a change-point. To decide this, TS-

SOUND scheme opens a post-monitoring window. 

 

4.4.4.4.4.2.14.2.14.2.14.2.1    The threshold for ZThe threshold for ZThe threshold for ZThe threshold for Zt t t t     

Besides simplifying the calculations of Zt, the scoring function 1( )ttSD X− makes the 

definition of  a threshold for Zt more intuitive than choosing a threshold to the original 

Score(Xt) in YAMANISHI and TAKEUCHI  (2002). We have used the theory of statistical 

significance tests (LEHMAN, 1997) to help us with this choice. 

 

At each time period t, we can see the classification of Xt as an outlier of the p 

distribution in t-1 as a significance test of the following hypothesis 

 

H0: the expected value for Xt is w
t-1 (Xt is

  not an outlier)           versus            

H1: the expected value for Xt is not w
t-1 (Xt is an outlier). 
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At a significance level of α, 0 < α < 1, the null hypothesis H0 is rejected if 
t

testZ  > zα/2, 

where       
1

1

ˆ

ˆ

t
t t
test t

X w
Z

σ

−

−

−
=  is a normalized score and zα/2 is the percentile 100(1-α/2) of 

the standard Gaussian distribution (average and standard deviation equal to 0 and 1, 

respectively). Here, we assume the estimates for wt-1 and 
1t

σ
−
carry enough information 

from the past data to approximate the distribution of Ztest by a standard Gaussian 

distribution.  

 

Since Zt is the sum of i

testZ , i=t-T+1, …, t, one can use the Gaussian model with 

average equals to zero and standard deviation equals to T to guide  the choice of the 

values for TZ
α , the threshold for Zt. For instance, if T = 2 and the significance levels       

α = (0.20, 0.10, 0.05, 0.025, 0.01), the values for TZ
α would be 1.81, 2.32, 2.77, 3.17 

and 3.64, respectively. These are the values of the percentiles 100(1-α/2) of a Gaussian 

distribution with mean and standard deviation equal to 0 and 2 , respectively.   

 

It is worth to note that the terms 
i

testZ , i=t-T+1, …, t, are not independent. Assuming 

they are positively correlated, 
1

t
i

test

i t T

Var Z T
= − +

 
< 

 
∑ . Then, the values of TZ

α
 should be 

smaller than they will be if we assume the independence and use ( )tVar Z T= . This 

makes harder the detection of Xt as an outlier. However, accouting for the dependence 

in this case is not a trivial task. Then, we expect the choice for the values of α can help 

to minimize this problem. 

 

The value of TZ
α depends on two user-defined parameters: the size of the risk of making 

a mistake when the scheme classifies Xt as an outlier (α) and how much of the past 

observations should be considered in this classification (T). For a fixed value of T, the 

smaller the value of α, the more rigorous the criterion to consider Xt as an outlier of the 
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distribution in t-1. Then, decreasing the value of α increases the value of TZ
α  and, as a 

result, the data suppression rate increases.  

 

For a fixed value of α, the greater the value of T is, the greater the delay to detect an 

outlier. On the other hand, increasing the value of T allows for capturing smooth 

changes in the expected value for the time series. The relevance of the change is a user-

defined parameter and also has to do with the value for α: if α is large, the scheme will 

be able to detect small changes, since the outlier alarm will rise more often. 

 

In our experiments, we have evaluated the values α = (0.25, 0.20, 0.15, 0.10, 0.05, 

0.025, 0.01) and T = (2, 4, 6, 8, 10). We discuss these values using a simple case study 

in section 4.7.1.  

 

4.4.4.4.4.2.2 4.2.2 4.2.2 4.2.2 Detecting changeDetecting changeDetecting changeDetecting change----pointspointspointspoints        

After detecting an outlier at time period t, TS-SOUND has to classify it as a change-point 

or an aberrant reading.  To make this decision, the node has to study the time series 

behavior before and after t. Then, if TS-SOUND detects an outlier, it opens a post-

monitoring window of size T. From t +1 to t +T, the node collects data and updates 

the AR(1) parameters. At the end of post-monitoring window, the node compares the T 

observations collected during the time window with the p distribution before and after 

the detected outlier.  

 

As we discussed at section 4.2, the outlier detected at time period t is considered to be 

a change-point if the observations within the monitoring window are considered to be 

outliers of the p distribution before t and non-outliers of the p distribution after t. In 

Figure 4.1, we can visualize the reason for this rule. 

 

To make the “before-comparison”, we use the function B

t TZ +  defined as following 
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( 1)

( 1)
1 ˆ

i T
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− −
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−
= ∑ .                                            (4.15) 

 

Note that B

t TZ + uses the estimates for the AR(1) parameters of time periods from t -T to  

t -1, that is, the last T estimates before the detected outlier. 

 

The “after-comparison” is made using the function A

t TZ +  defined as 

 

1 ˆ

t

A

t

t T

i t

i

t T

X w
Z

σ

+

= +
+

−
= ∑  .                                               (4.16) 

 

The expression for A

t TZ +  uses the estimates for the AR(1) parameters calculated when 

the outlier was detected, at time period t. 

 

Then, Xt is considered to be a change-point if 
B

t TZ + ≥ T
c

Z
α⋅  and A

t TZ + ≤ T
c

Z
α⋅ , where      

0 < c ≤ 1. If c < 1, the rigor to consider the observations after t as outliers is greater 

than the rigor used to detected the outlier in t.  Actually, we propose to keep the same 

rigor level for the “before-comparison” (c=1) and increase the rigor for the “after-

comparison” (e.g., c=0.05).  This strategy takes into account the values produced 

immediately after a change-point are possibly accommodating themselves around the 

new expected value. This can produce values for A

t TZ +  larger than they should be if a 

longer time period had been observed, which would lead to the wrong classification of 

a change-point as an aberrant reading. Then, increasing the rigor in the “after-

comparison” decreases the probability of making this mistake.  

 

If the detected outlier is considered to be a change-point, the node updates the 

database at the base station sending a summary of the observations collected during 

the post-monitoring window. We have adopted the median to calculate this summary, 
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since the median is more robust to aberrant readings than the average, for instance. 

This property of the median can be especially useful if TS-SOUND mistakes the 

beginning of sequence of aberrant readings for a change-point. In this case, the node 

will send the summary to the base station unnecessarily, which will degrade the 

suppression rate. However, the median will suffer less influence of these erroneous 

readings, especially if the length of the monitoring window is larger than the size of the 

aberrant sequence. Then, at least the prediction error at base station will be preserved.  

 

It is worth to mention that the length of the post-monitoring window (T) could be 

different from the number of past observations used in SDAR parameters estimation 

and in Zt statistics. However, in our additional experiments to evaluate this possibility, 

TS-SOUND has got the best results when both time windows have had the same 

length.  

 

4.4.4.4.4.3 Other proposals to detect outliers in a time series 4.3 Other proposals to detect outliers in a time series 4.3 Other proposals to detect outliers in a time series 4.3 Other proposals to detect outliers in a time series     

There are other proposals for outliers detection in time series such as GRUBBS (1969), 

POLLAK and SIEGMUND (1991), RAMASWAMY et al. (2000), MUTHUKRISHNAN et al. 

(2004), SUBRAMANIAM (2006) and those described by Hodge and Austin (2004). 

However, we have considered the proposal in YAMANISHI and TAKEUCHI (2002) as the 

best one to be adapted to a scheme of data suppression in sensor networks. The 

reasons for this choice have been the following: a) the proposal in YAMANISHI and 

TAKEUCHI (2002) considers the temporal autocorrelation of sensor data by adopting a 

time series model; b) it is adaptative to nonstationary data sources; c) it allows for on-

line detection of outliers and d) the calculations can be made simpler.  

    

4.4.4.4.5555    TSTSTSTS----SOUND scheme SOUND scheme SOUND scheme SOUND scheme     

The TS-SOUND scheme has two phases: learning and operation. In the learning phase, 

TS-SOUND estimates the initial values for the SDAR parameters and the first two values 
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for Zt.  

 

4.4.4.4.5.5.5.5.1 1 1 1 Learning phase Learning phase Learning phase Learning phase     

Before beginning its operation, the node collects values during a short time window, 

say, Nini time periods. The values for the initial values 
0 0 0

0 1
  ,  , C Cµ  are calculated as 

following 
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 .     (4.17) 

 

To calculate the first value for Zt, the node needs T additional observations. Then, 

the size of learning sample is Nlearn = Nini + T. Figure 4.2 presents the pseudo-code 

for the algorithm running in the learning phase. 

 

Until completing Nini observations, the node collects and stores data every ts time units, 

which is the user set sampling rate (lines 1-5). 

 

Discrepant values can affect the estimative for the initial values. Then, the learning 

algorithm filters these outliers before calculating the initial values.  The outliers limits 

(OUTUPPER and OUTLOWER) are calculated according to the rules for building boxplots 

(TUKEY, 1977). First, we calculate P25 and P75, which are the 25
th and the 75th percentiles 

of the observations, respectively. To calculate the percentiles, the algorithm has to sort 

the data, which can be done during the values storage. The difference IQ=(P75-P25) is 

called interquartile range. The upper and lower limits are defined as  OUTUPPER = (P75 + 

1.5 IQ) and OUTLOWER = (P25  - 1.5 IQ). Values outside these limits are considered to be 

outliers.  

 

After removing the possible outliers (lines 7-8), the algorithm calculates the initial 

values for SDAR parameters (line 9). 
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learning() 

 

Input     r, T, Nini  

Output   initial values for SDAR parameters : 1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
j j jj j

C C ρ σ  and Zt. 

1)  j=1 

2)  every ts time units  while j  ≤  Nini do 

3)       read 
j

x ; 

4)       enqueue 
j

X X x= ∪  ; 

5)       j= j +1 . 

6)  calculate OUTUPPER , OUTLOWER . 

7)  from j=1 to j=Nini do 

8)    if (OUTLOWER < j
X  < OUTUPPER) enqueue jnoOut noOutX X X= ∪ . 

9)  calculate 
00 00 0

10 1
2, ,  , ,    andµ C C ρ σ  

using noOutX . 

10) j = Nini + 1 

11) read 
j

x ; 

12) enqueue 
j

X X x= ∪  ; 

13) send 
j

x ; 

14) calculate the SDAR parameters 1
0 1

2, ,  , ,    andˆµ̂ ˆ ˆ ˆ
j j jj j

C C ρ σ ; 

15) j = j+1; 

16) every ts time units  while j  ≤  Nini + T do 

17)   read 
j

x ; 

18)   enqueue 
j

X X x= ∪  ; 

19)   calculate and store   the SDAR parameters  

                             
1

0 1

2, ,  , ,    andˆµ̂ ˆ ˆ ˆ
j j jj j

C C ρ σ ; 

20)   j = j+1; 

21) calculate the first value of Zt  

22) return  1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
j j jj j

C C ρ σ  and Zt. 

Figure 4.2 - Pseudo-code for the learning phase algorithm. 

 

To update the initial values, the node samples T additional observations and sends the 

first of them to the base station (line 10-13). The SDAR algorithm updates its 

parameters according to the expressions from (4.7) to (4.11) and stores the results (lines 

14-15). The node collects the remaining (T-1) values and runs the SDAR algorithm (lines 
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16-20). Then, the node calculates the first value for Z, ZT, using the expression in (4.14). 

 

The learning algorithm returns SDAR parameters and the first value of Zt. 

    

4.4.4.4.5.25.25.25.2    The operation phaseThe operation phaseThe operation phaseThe operation phase    

    After the learning phase, the node has all the parameters it needs to start the operation 

phase: the user-set values (r, α and T), the SDAR parameters and the first value for Zt,     

t = Nini + T. Figures 4.3 and 4.4 presents the pseudo-code for TS-SOUND operation 

phase and post-monitoring algorithm, respectively.  

 

The operation phase continues while the node’s battery has a noncritical level of energy 

(energy.OK=1). The node reads the sensed value, stores only the last T sensed values 

(lines 3-5), runs the SDAR algorithm and stores the T+1 last values of the distribution 

parameters (lines 6-7),   and calculates the value of Zt (line 8). 

 

If the suppression scheme considers that Xt has a small probability to be generated bt 

the current distribution (Zt  > ZT
α ), TS-SOUND opens a monitoring window of size T 

(lines 9-10). During this time interval (Figure 4.4), the node collects data, updates the 

SDAR parameters and keep their (2T+1) last values. After closing the monitoring 

window, the node calculates B

t TZ +  and A

t TZ +  (line 11) and compares their values with 

their respective thresholds (line 12). If the outlier detected at time period t is considered 

to be a change-point, the node summarizes the values collected inside the post-

monitoring window using the median and sends this summary to the base station (lines 

13-14).  Otherwise, since the detected outlier is classified as an aberrant reading, the 

updates for the SDAR parameters calculated during the monitoring window are 

replaced by the updates at t-1, the time period before the occurrence of the detected 

outlier (lines 15-16). This procedure avoids the bad effect of aberrant readings on the 

estimation of the distribution parameters.  
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TS-SOUND operation.phase() 

Input     r, T, TZ
α

,
0.05
TZ

α
, 1

0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ , Zt .  

Output    values sent to the base station 

 

1)  t = (Nini + T)+1 ;                                  # time counter 

2)  every ts time units  while (energy.OK = 1) do 

3)      read tx  ; 

4)      enqueue tX X x= ∪  ; 

5)      keep the last T values of X  ; 

6)      calculate and store SDAR parameters 1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ  ;
 

7)      keep the last (T+1) values of 1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ  ;
 

8)      calculate Zt   ; 
 

9)      if (Zt   > TZ
α
) do                  # if an outlier is detected… 

10)        run  monitoring.window() ;        # … it opens the monitoring 

                                                                                                     window 

11)        calculate 
B

t TZ +  and 
A

t TZ +  ; 

12)        if 
B

t TZ + ≥ TZ
α
 and A

t TZ + ≤ 
0.05
TZ

α
 do   

13)           calculate x�  = median[ 1t t T
X X+ +… ] ; 

14)           send x� . 

15)        else do 

16)           1
0 1 { , 1,..., }

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
j j jj j

j t t t T
C C ρ σ

= + +

 
   =

1 1 1
1 1

1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ
− − −

− −

. 

17)     t = t + 1.      

18) send  ( tx  , end.flag ).          # End of node’s operation  

Figure 4.3 - Pseudo-code for the TS-SOUND operation phase algorithm 

 

When the node is running out of energy (energy.OK=0), the algorithm transmits the 

last sensed value and an end flag. 

 

Opening a time window after the outlier detection introduces a delay of T time periods 

in the base station updating. However, we have three reasons to adopt this post-

monitoring window. First, it allows for comparing the time series before and after the 

detected outlier. Second, it allows for summarizing the values generated by the new 
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distribution. This summary estimates better the next data to be suppressed than the 

value that was responsible by the alarm raising. Third, it avoids sending the observation 

detected as an outlier to the base station, since TS-SOUND may mistake an aberrant 

point for a change-point.  

 

monitoring.window() 

Input     r, T, the last (T+1) values of 1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ .  

Output    X , the last (2T+1) values of
  

1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ  

 

1b)  j = 1; 

2b)  every ts time units  while (j <= T) do    # monitoring window 

3b)      t = t + j ; 

4b)      read tx  ; 

5b)      enqueue tX X x= ∪  ; 

6b)       keep the last T values of X  ; 

7b)      calculate and store 1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ  

8b)      keep the last (2T+1) values of 1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ  ;
 

9b)      j = j+1 . 

10b) return X ,the last (2T+1) values of
  

1
0 1

2, ,  , ,ˆµ̂ ˆ ˆ ˆ
t t t

t t

C C ρ σ . 

Figure 4.4 - Pseudo-code for the post-monitoring window algorithm 

 

4.4.4.4.5.35.35.35.3    Costs  Costs  Costs  Costs      

At the end of the learning phase, the node stores Nini values. After that, at each 

time period t, the node has to store the last T updates for the SDAR parameters (5T 

values) and the last T sensed values. Besides, the node has to store five user-set 

parameters. Four of them are permanent (r, ZT
α , 0.05

TZ
α and T). The size of the 

learning sample (Nini) can be deleted after the learning phase, as well as the 

learning sample.  During a monitoring window, the node has to store the last (2T 

+1) values of the SDAR parameters, that is, 5(2T +1) values. Then, during the 
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operation phase, the node has to store (6T+4) values outside the monitoring 

window and (10T+9) values during the monitoring window.   

 

TS-SOUND operation phase involves mainly simple calculations, as additions and 

multiplications. The most costly operation is the square-root in the expression 

2ˆ ˆ
tt

σ σ= . One alternative to decrease the calculation costs is to use the mean 

absolute deviation (MAD) instead of 
t

σ to define Zt. This would elimate the 

square-root operation. We have run experiments using this alternative. The results 

are discussed in section 4.7.3. 

 

The message the node sends to the base station contains only the median the data 

collected during the post-monitoring window. 

 

4.5.44.5.44.5.44.5.4 TSTSTSTS----SOUND as a suppression schemeSOUND as a suppression schemeSOUND as a suppression schemeSOUND as a suppression scheme    

In this section, we frame the TS-SOUND protocol as a suppression scheme according to 

framework proposed in (SILBERSTEIN et al., 2007a). At each time period t, the node 

collects data xt, updates the SDAR parameters, calculates Zt and evaluates the function 

Z.fcn, defined as following 

 

tif

otherwise

,    Z  > 

0,  

1 TZ
α

= 


Z.fcn .                                         (4.18) 

 

As in PAQ and EXP schemes, Z.fcn evaluates the error between real and predicted 

values.  However, in TS-SOUND case, the calculations of the predicted values are based 

on a time series model updated at each new sensor reading.  

 

If Z.fcn = 1, the nodes opens a monitoring window and, for T time periods, sense 

and store the data. At time period t+T, the node evaluate two functions, Zb.fcn and 

Za.fcn, defined as following  
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if

otherwise

,    Z  

0,  

1 TZt T
B α

+
 ≥

= 


Zb.fcn   and    
0.05

 if

otherwise

,    Z

0,  

1 TZt T
A α

+ ≤
= 


Za.fcn ,         (4.19) 

 

where B

t TZ +  and A

t TZ +  are defined by the expressions (4.15) in and (4.16), respectively. 

The functions  Z.fcn, Zb.fcn and  Za.fcn play the role of the g function in the data 

suppression framework in (SILBERSTEIN et al., 2007a). 

 

To decide if a message has to be sent to the base station, the node uses the following 

encoding function  

{enc
if  

otherwise

,    ( )  

,    
T

f
x ∩

=
⊥

Zb.fcn Za.fcn�
,                       (4.20) 

 

where Tx�  is the median of the T values read inside the post-monitoring window. If 

T=1, 1 1tx x +=� . 

 

At each time period t, the base station waits for the report tr from the nodes and uses 

the following decoder function to update its database 

 

( 1) if

,     if   = 

,     
ˆ

ˆ
T t T

t
t t

x r x
x

x r−


=  =⊥

� �
.                                      (4.21) 

 

VB and TS-SOUND schemes have similar encoding and decoding functions. They send 

only one value to the base station. In case of data suppression, the last sent value is the 

estimative for the current time period. 

 

4.4.4.4.5.5 O5.5 O5.5 O5.5 On TSn TSn TSn TS----SOUND’SOUND’SOUND’SOUND’s parameters s parameters s parameters s parameters     

TS-SOUND scheme is defined by three parameters: the size of the time windows (T); the 

amount of change in the expected behavior of the monitored variable we want to 
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detect (α) and how much weight the current observation must have in the on-line 

updating of the distribution parameters (r).  

 

As the length of the post-monitoring, the value of T should be as large as the size of the 

sequence of aberrant readings. On the other hand, we should choose a small value for 

T to decrease the delays to detect an outlier and to update the base station if a change-

point occurs. 

 

As we will discuss in section 4.7, we do not know how large the clusters of aberrant 

readings will be. Then, the choice of the value for T must consider TS-SOUND’s 

performance when it is applied on time series with sequences of aberrant readings of 

several sizes. Then, we have to choose the value of T that produces the most 

homogeneous performances considering aberrant clusters of different sizes. The 

experiments results in section 4.7 will help us to make this choice.  

 

On choosing the value of r, we should consider how large the local variation of time 

series is. For instance, a wind speed time series has a local variation larger than the local 

variation of an atmospheric pressure time series (Figure 4.5, section 4.6). Therefore, the 

current observation in a wind speed series should have a weight (r) larger than the 

weight of the current observation in an atmospheric pressure series. However, giving 

larger weights to the observation in the estimation of the distribution parameters 

makes harder to detect this observation as an outlier. In fact, as we will see in 

section 4.7, values for r larger than 0.1 have degraded the suppression rates in the 

evaluation experiments.  

 

The value of α is the probability of making a mistake: detecting a non-outlier as an 

outlier. If we set a small value for α, we decrease this error probability. However, small 

values for α make harder the detection of change-points, especially if these points 

represent a small change in the expected behavior of the time series. On the other 

hand, if α is large, the scheme will be able to detect small changes, even though false 
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outlier alarms will rise more often. Then, the user has to define what is more important 

to him/her: capturing small changes or avoiding aberrant readings.  

    

4.4.4.4.6666      Evaluation Experiments  Evaluation Experiments  Evaluation Experiments  Evaluation Experiments    

In this section, we describe a set of extensive experiments to evaluate the performance 

of the TS-SOUND suppression scheme. 

  

4.4.4.4.6.1 6.1 6.1 6.1 The data The data The data The data     

We have used real data collected by the weather station of the University of 

Washington (USA)20. Our goal has been to account for diverse types of temporal 

behavior. Then, we have selected time series for wind speed (nautical miles per hour), 

air temperature (F), air relative humidity (%) and atmospheric pressure (milibars). The 

temporal resolution is one measurement per minute (average of measurements at each 

5 seconds). To account for seasonal variability in the weather data, we have chosen four 

different months (October’06, January’07, April’07 and July’07). For each month, we 

have selected the data of the days from 10th to 16th. We have run the experiments using 

these 28 daily time series (1440 readings per series) for each variable.  

 

Figure 4.5 presents the typical daily time series for each variable. These time series 

present different behaviors: from series with large local movements relative to its global 

variation (wind speed) until series with small local movements relative to its global 

variation (atmospheric pressure).  

 

 

 

                                                 
20 http://www-k12.atmos.washington.edu/k12/grayskies/nw_weather.html 
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4.6.2 The experiments 4.6.2 The experiments 4.6.2 The experiments 4.6.2 The experiments     

We have designed the experiments to evaluate the performance of TS-SOUND scheme 

and compare it with the performance of the following suppression schemes: value-

based (VB), exponential regression (EXP) and PAQ.  
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Figure 4.5 - Typical daily time series used in the evaluation experiments.  

From left to right: wind speed (July’07); air temperature (April’06); air relative 

humidity (October’06); atmospheric pressure (April’07). 

  

For the parameters of TS-SOUND scheme, we have set the values r = (0.001, 0.005, 

0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6), α = (0.25, 0.20, 0.15, 0.10, 0.05, 0.025, 0.01) 

and T = (2, 4, 6, 8, 10). The value for the threshold TZ
α  corresponds to the percentile 

100(1-α/2) of the Gaussian distribution with zero mean and standard deviation T . The 

first (100 + T) values of the time series composed the learning sample. We have run the 

experiments using the R environment (R_DEVELOPMENT_CORE_TEAM, 2005). 

 

Making the TS-SOUND scheme comparable to the other evaluated schemes (PAQ, EXP 
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and VB) is not a trivial task, since they use different criteria to trigger their data sending. 

The latter schemes use absolute value of the prediction error to decide when the node 

must send data to the base station, whereas TS-SOUND uses the detection/classification 

of outliers.   Then, we have had to answer the question: “how to choose values for ευ 

and εVB (PAQ/EXP and VB error thresholds, respectively) so that we make these schemes 

comparable to TS-SOUND scheme using the values chosen for α ?”  

 

Our solution for this problem has been to use the prediction errors of TS-SOUND 

scheme to define the values for ευ and εVB . Then, after applying the TS-SOUND scheme 

to a real time series data using a given value for α, we have calculated the absolute 

prediction error as following 

 

 1, 2, ...,,     ˆ TSt t t t NAE x x == −                                        (4.22) 

 

where ˆtx is prediction value for real data tx  and NTS is the size of the time series. To 

avoid the influence of discrepant values, we have decided to throw out the 10% largest 

values of AEt and define the value for ευ and εVB  as the percentile 90 of the AEt values. 

Therefore, the maximum error of the predictions using PAQ, EXP and VB schemes is the 

percentile 90 of the prediction error of TS-SOUND schemes. Once the range of the 

absolute prediction error has been equalized, the distribution of the error within this 

range will be determined by the performance of the evaluated schemes. 

 

The values for the other parameters of PAQ and EXP have been chosen based on the 

values cited in (TULONE and MADDEN, 2006) as good choices: εδ = (1.8/3.0)ευ, 

APAQ=(5, 15) and a=(8/15)APAQ.  The learning sample size (NLS) has been set as the first 

100 observations of the time series.   

 

4.4.4.4.6.2.1 6.2.1 6.2.1 6.2.1 Evaluating the influence of aberrant readingsEvaluating the influence of aberrant readingsEvaluating the influence of aberrant readingsEvaluating the influence of aberrant readings    

We have designed an experiment to evaluate how sensitive to aberrant points are the 
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suppression schemes analyzed in this chapter. This experiment has used the real time 

series previously described. For each time series, we have inserted aberrant values, 

isolated or clustered, in randomly chosen time periods. To generate isolated aberrant 

readings, we have sampled 100 time periods of a given time series to be replaced by an 

aberrant reading, preserving a minimum interval of 11 time periods between two 

sequential positions. Then, about 10% of a time series has been composed by aberrant 

points. To generate the aberrant reading at the selected time period, we have used the 

interquartile range IQ, defined as       IQ = Pdiff(75) - Pdiff(25), where Pdiff(p) is the 

percentile p of the sequential differences |Xt – Xt-1|. In a boxplot analysis (TUKEY, 1977), 

values smaller than Pdiff(25) – 3 x IQ or greater than Pdiff(75) + 3 x IQ are considered to 

be extreme outliers. Then, to generate an aberrant reading, we have added               

(sign x range x IQ) to the current value of the candidate time period, where range has 

been randomly chosen inside the interval [3 ; 6] and sign has been randomly chosen 

between -1 and +1. Adopting the boxplot’s rule and a random value for range, we 

have expected to decrease our influence on the generation of the aberrant values.  

 

In addition to isolated aberrant readings, we have generated sequences with 2, 3, 4 and 

5 aberrant readings. From now on, we will denote the sequences of aberrant readings 

by aberrant sequences. To produce such sequences, we have supposed that all the 

aberrant readings in a cluster are generated in a same direction, as those ones 

presented in Figure 4.1. Given the size of the sequence, we have grouped the initial 100 

aberrant readings. For instance, in the experiments with sequences of 4 aberrant points, 

we have generated 25 sequences. The first reading of the sequence has been inserted in 

the time series as in the isolated case. To generate the sequential aberrant readings, we 

have used the same rule to produce the first aberrant reading. However, their signs have 

been constrained to the sign of the first reading in the cluster. We have applied TS-

SOUND, PAQ, EXP and VB schemes on these modified time series using as parameters 

the values described in the previous section. 

 

 

 



 128 

4.4.4.4.6.2.2 6.2.2 6.2.2 6.2.2 Assessing the pAssessing the pAssessing the pAssessing the performance of the suppression schemeserformance of the suppression schemeserformance of the suppression schemeserformance of the suppression schemes    

We have evaluated the performance of suppression schemes using the trade-off 

between two measures: the suppression rate and the prediction error. 

 

We have adopted the median absolute error (MAE) to measure the prediction error. The 

median absolute error has been calculated as  

 

( 1,2,..., ) ˆTSt N t tMAE median x x== − ,                   (4.23) 

 

where NTS is the size of the time series. 

 

We can cite some advantages of adopting MAE to assess the prediction error instead of 

using other error measures such as the mean square error (MSE). First, the absolute 

difference between predicted and real values is an intuitive measure for the prediction 

error. Second, the absolute error preserves the original measurements units, which 

makes easier its interpretation. Finally, the median is more robust to the influence of 

discrepant values.  

 

The suppression rate (SR) has been calculated as the proportion of suppressed data 

  

(number of sent messages)
SR = 1-

TSN
.                          (4.24) 

 

If a scheme increases its suppression rate, we expect MAE also increases, since the node 

updates the base station database less often. A suppression scheme S1 can be defined 

as better than other suppression scheme S2 if, for a given value of prediction error, S1 is 

able to get suppression rates larger than the suppression rates of S2.  

  

To evaluate the robustness to aberrant readings of TS-SOUND scheme, we have 
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calculated the odds of sending data to the base station provided that an aberrant 

reading has been detected as   

   

number of detected aberrant readings that have caused data sending

number of detected aberrant readings that have not caused data sending
SENT

Aberrant
Odds = .          

(4.25) 

 

A TS-SOUND scheme is considered to be robust to aberrant readings if its 
SENT

Aberrant
Odds  

is smaller than 1. Then, a suppression scheme S1 can be defined as more robust to 

aberrant readings than a suppression scheme S2 if S1 has got an odds of sending data 

smaller than S2’s odds.   

 

Since PAQ, EXP and VB schemes always send the detected outliers to the base station, 

their 
SENT

Aberrant
Odds  are infinite. Then, we have evaluated the robustness to aberrant 

readings of these schemes by comparing their suppression rates in the time series with 

and without aberrant readings. For a robust scheme, this ratio is close to 1. 

 

4.4.4.4.7 The results7 The results7 The results7 The results    

In this section, we present the main results of the experiments described in the previous 

section.  We start our analysis with a simple case study. 

 

4.4.4.4.7.17.17.17.1    A simple case studyA simple case studyA simple case studyA simple case study    

We have had access to the air temperature and relative humidity data collected by three 

Tmote Sky sensor nodes21. They have collected data at each 30 seconds during 32 

                                                 
21 Thanks to the Professor Rone Ilídio da Silva of Universidade Presidente Antônio Carlos (Campus 
Conselheiro Lafaiete), for making these data available. 
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hours. Each sensor node has produced about 4000 readings of each variable.  The top 

of the Figure 4.6 presents the time plot of the temperature data collected by the sensor 

node 2.  

 

Figure 4.6 - Results of TS-SOUND scheme applied to data collected by Tmote Sky. 

At the top: time series predicted at the base station. 

At the bottom: real air temperature data collected at the sensor node 2. 
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Since these data have not enough time series to be used in an extensive evaluation, we 

have used them to perform an initial analysis. Table 4.1 presents the values for the 

performance measures of the evaluated schemes using T=2, α=0.15, r=0.1             

(TS-SOUND’s parameters) and APAQ = 15 (PAQ and EXP’s parameter). The values for ευ 

and εVB were determined as we have described in section 4.6.2.  

 

For both variables, TS-SOUND has got suppression rates similar to the rates of the other 

schemes, whereas its prediction error has been smaller than the prediction error of the 

other schemes. The top of the Figure 4.6 presents the time series predicted at the base 

station when the TS-SOUND scheme has been applied to the temperature data 

collected by the sensor node 2. Comparing the real and predicted series, we have 

noticed that TS-SOUND avoids reporting the erratic movement of the series as, for 

instance, in the beginning and final parts of the time series in the Figure 4.6. On one 

hand, TS-SOUND delays the notification of fast changes such as the one near the time 

period 2000. TS-SOUND classifies this behavior as an aberrant one until it notices there 

is a change. From this moment on, it updates the base station more often. On the other 

hand, likely clusters of aberrant readings are represented by few updates, as those ones 

near the time period 3000.   

 

Since no messages can be sent to base station during the TS-SOUND’s monitoring 

window, increasing its size (T) has increased the suppression rates. As a result, the value 

of the median absolute error has also increased. The parameter α has had a similar 

effect on the suppression rates and prediction errors:  the larger the rigor to consider an 

observation as an outlier, the larger the chance of suppressing data. 

 

On the value of r, our initial experiments have pointed to r=0.1 as the value that 

produces the best trade-off between the suppression rate and the prediction error. 

This means that we obtain the best performance for TS-SOUND when the on-line 

estimation of the new values for the distribution parameters sets less weight to the 

current sensor reading (equations (4.7) to (4.11)). TS-SOUND schemes using r 
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values smaller than 0.1 have produced results very similar to the results with 

r=0.1. However, increasing the value of r up to 0.5 has degraded the suppression 

rates. In fact, giving larger weights to the observation in the estimation of the 

distribution parameters makes harder to detect this observation as an outlier.   

 

Table 4.1 - Results of the evaluation experiments applied to data collected by three Tmote 

Sky sensor nodes. Air Temperature (oC ) and Relative Humidity (%) data. Suppression rate 

and median absolute error are within the parenthesis. 

Sensor Node 1 Sensor Node 2 Sensor Node 3 

Scheme 
Temperature 

(ευ = εVB =  

0.03 oC) 

Relative 

Humidity 

(ευ = εVB 

=0.41 %) 

Temperature 

(ευ = εVB =   

0.08 oC) 

Relative 

Humidity 

(ευ = εVB = 

0.25%) 

Temperature 

(ευ = εVB= 

0.03 oC) 

Relative 

Humidity 

(ευ = εVB 

= 0.17%) 

TS-SOUND 

(r=0.1;T=2; 

α =0.15) 

0.823 

(0.005 oC) 

0.857 

(0.057 %) 

0.858 

(0.015  oC) 

0.877 

(0.040 %) 

0.865 

(0.010 oC) 

0.883 

(0.020 %) 

PAQ 

(APAQ=15) 

0.753 

(0.014 oC) 

0.807 

(0.157 %) 

0.812 

(0.031 oC) 

0.826 

(0.086 %) 

0.783 

(0.010 oC) 

0.836 

(0.053 %) 

EXP 

(APAQ=15) 

0.893 

(0.010 oC) 

0.816 

(0.146 %) 

0.825 

(0.028 oC) 

0.829 

(0.082 %) 

0.789 

(0.009 oC) 

0.846 

(0.051 %) 

VB 

 

0.858 

(0.010 oC) 

0.872 

(0.124 %) 

0.874 

(0.020 oC) 

0.892 

(0.086 %) 

0.859 

(0.010 oC) 

0.897 

(0.041 %) 

 

 

4.4.4.4.7.27.27.27.2    Selecting the best value for the length of the monitoring window Selecting the best value for the length of the monitoring window Selecting the best value for the length of the monitoring window Selecting the best value for the length of the monitoring window     

TS-SOUND’s strategy to distinguish a change-point from an aberrant reading is to 

use a post-monitoring window whenever an outlier is detected. This time window 

works as a filter of aberrant readings and makes TS-SOUND robust to these 

erroneous data. The success of this filtering strategy is closely related to the length 

of the monitoring window. We expect large aberrant sequences require large 
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windows to be filtered. However, we do not know how large the clusters of 

aberrant readings will be.  

 

In this section, we examine the results of experiments with the meteorological data 

of the University of Washington to answer the following question: “Considering 

several sizes for the clusters of aberrant readings, which is the minimum value for 

the length of the monitoring window that leads to TS-SOUND scheme with 

a) the largest robustness to aberrant readings and  

b) the best trade-off between suppression rate and prediction error ?” 

 

To answer the first part of the question, we have summarized some of the 

experiments results using plots as the ones in figures 4.7 and 4.8. They present the 

odds of “sending data to the base station provided that an aberrant reading has been 

detected” as a function of the length of the monitoring window considering aberrant 

sequences of several sizes. Figures 4.7 and 4.8 present the results for the sets of time 

series that have got the most irregular behaviors: wind speed and air relative humidity 

measurements, respectively. We have looked for the smallest length for the monitoring 

window that leads to the most similar values for the odds among aberrant clusters of 

different sizes. For the wind speed time series, the monitoring windows of length 10 

and 2 have presented the most similar odds. Then, the chosen length is T=2. For the air 

relative humidity, the length is also T=2. For air temperature and atmospheric pressure 

time series, the larger the monitoring window is, the less similar the odds are. Therefore, 

T=2 is the chosen length.  

 

Increasing the value of α decreases the odds of “sending data to the base station 

provided that an aberrant reading has been detected”, since the rigor to classify an 

observation as an outlier increases.  
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Figure 4.7 -  Robustness to aberrant readings of TS-SOUND scheme. 

According to the length of the monitoring window (T) and the size of the 

aberrant clusters (CS). The other TS-SOUND’s parameters have been α =0.15 

and r=0.1. 

   

We have answered the second part of the question by examining plots as the ones in 

figures 4.9 and 4.10. They present the trade-off between suppression rate and 

prediction error for several lengths of the monitoring window and considering aberrant 

sequences of different sizes. We have looked for the smallest length for the monitoring 

window that leads to the most similar suppression rates and prediction errors among 

aberrant clusters of different sizes. In figures 4.9 and 4.10, we have looked for the 

group of symbols (T values) that are more “clustered”. For wind speed and air relative 

humidity time series (figures 4.9 and 4.10, respectively), the monitoring windows of 

length 6 and 4 have presented the most similar suppression rates and prediction errors. 
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Then, the chosen length is T=4. Examining the air temperature and atmospheric 

pressure time series, we have got the same value for T.  

 

 

Figure 4.8 -  Robustness to aberrant readings of TS-SOUND scheme. 

According to the length of the monitoring window (T) and the size of the 

aberrant clusters (CS). The other TS-SOUND’s parameters have been α=0.15 

and r=0.1. 

 

Since we have got different answers for the two parts of the proposed question, 

we have chosen the best value for T by examining the effect of using the value 

chosen in part (a) on the context of part (b) and vice versa. Then, we have 

examined the effect of choosing T=2 on the trade-off between suppression rate 

and prediction error and the effect of using T=4 on the odds of “sending data to the 

base station provided that an aberrant reading has been detected”. In the former case, 

exchanging T=4 for T=2 produces a substantial increasing in the dissimilarity of 
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the suppression rates and prediction errors for the wind speed, air temperature 

and atmospheric pressure time series. In the latter case, the effect of exchanging 

the values of T (T=2 for T=4) is smaller than in the former case. The worst effect 

has occurred in the air relative humidity time series (Figure 4.8). For T=4, the odds 

of “sending data to the base station provided that an aberrant reading has been 

detected” is, in median, equal to 1 when isolated aberrant readings (CS=1) occur in the 

time series. However, the other odds are smaller than 1. Then, considering all 

evaluated time series and sizes for aberrant clusters, we have chosen the value 4 as 

the best one for the length of the monitoring window. 

 

  

Figure 4.9 - Performance of TS-SOUND scheme applied to wind speed time series.  

The parameters have been α=0.15, r=0.1 and several values for the length 

of the monitoring window (T). Each point represents the summary of the 

results for time series with aberrant clusters of different sizes: 0 (no aberrant 

readings), 1 (isolated aberrant readings), 2, 3, 4 and 5.  
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Figure 4.10 - Performance of TS-SOUND scheme applied to relative humidity time series.  

The parameters have been α=0.15, r=0.1 and several values for the length 

of the monitoring window (T). Each point represents the summary of the 

results for time series with aberrant clusters of different sizes: 0 (no aberrant 

readings), 1 (isolated aberrant readings), 2, 3, 4 and 5.  

 

4.4.4.4.7.3   Evaluating the schemes’ performances7.3   Evaluating the schemes’ performances7.3   Evaluating the schemes’ performances7.3   Evaluating the schemes’ performances    

In this section, we compare the performance of TS-SOUND scheme using T= 4, 

selected in previous section, with the performance of PAQ, EXP and VB schemes. 
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As we have mentioned in section 4.6, we have used the trade-off between the 

suppression rate and the prediction error of a scheme as a measure for its 

performance.  We represent graphically this trade-off for each one of the sets of 

meteorological time series using the scatter plots of the figures from 4.11 to 4.14. 

Each point of a scheme represents the summary of its performance using a 

different value for α (0.15, 0.10, 0.05, 0.025, 0.01), in this order, following the 

increasing of the suppression rates. For PAQ/EXP and VB schemes, the values for 

the correspondent error thresholds ευ and εVB, respectively, have been defined as 

described in section 4.6.2. Points closer to the upper-left corner represent the 

schemes with the best performances. Since TS-SOUND with T=4 has got its worst 

results when the time series had isolated aberrant readings (figures 4.6 and 4.7), 

we have chosen this scenario to compare TS-SOUND’s performance with the 

performance of the other evaluated schemes. The upper and bottom subfigures 

illustrate which data the base station would have if the node applied TS-SOUND 

and VB schemes, respectively, on the real time series presented in the middle 

subfigure. The real time series in the middle subfigures are the original ones in 

Figure 4.5 with generated aberrant clusters of size 1 (isolated aberrant readings).  

 

To understand what values we should expect for the prediction errors so 

that we could consider them acceptable, we have used the size of the 

sequential changes in the time series as a basis for comparison. Then, we 

have calculated the sequential absolute differences, 1t t
X X −− , in the series 

of each variable and summarized the sequential changes (non-zero 

differences) using the percentiles 5 and 95. Therefore, in the air relative 

humidity and temperature time series, 90% of the sequential changes are 

within the interval [0.10 ; 1.0]% and [0.10 ; 1.0]F, respectively. In the 

atmospheric pressure time series, 90% of the sequential changes are within 

the interval [0.10 ; 0.40] mb. In the wind speed time series, 90% of the 

sequential changes are within the interval [0.10 ; 2.1] nautical miles. 

Analyzing figures from 4.11 to 4.14, we notice all evaluated schemes have 
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got median prediction errors compatible with the expected sequential 

changes in a given type of meteorological time series. In other words, all 

evaluated schemes have got acceptable errors on predicting the real time 

series at base station. 
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Figure 4.11 - Performance of the evaluated schemes in air relative humidity time series 

with isolated aberrant readings 

Legend: S for TS-SOUND (r=0.1, T = 4), V for value-based, P for PAQ 

(APAQ=15) and E for EXP (APAQ=15). Each point of a scheme represents the 

summary of its performance using a different value for α  (0.15, 0.10, 0.05, 

0.025, 0.01), in this order, following the increasing of the suppression rates. 

For PAQ/EXP and VB schemes, the values for the correspondent error 

thresholds ευ and εVB, respectively, have been defined as described in section 

4.6.2. 
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Figure 4.12 - Performance of the evaluated schemes in air temperature time series  

with isolated aberrant readings. The legend and other details are in the 

caption of Figure 4.11. 

 

TS-SOUND scheme has got its best performance in air relative humidity and 

temperature time series (figures 4.11 and 4.12, respectively). In the air 

relative humidity data, TS-SOUND has been the scheme with the best 

performance for all values of α, reaching the highest suppression rates and 

the smallest prediction errors. For the smallest two values of α in the air 

temperature data and for α = (0.10,0.05) in the atmospheric pressure data 

(Figure 4.13), the prediction errors of the TS-SOUND and VB are, in 

median, the same. However, TS-SOUND has got suppression rates higher 

than VB’s rates.  
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Figure 4.13 - Performance of the evaluated schemes in atmospheric pressure series 

with isolated aberrant readings. The legend and other details are in the 

caption of Figure 4.11. 

 

In the wind speed time series, which have a large local variation, TS-SOUND has 

increased the prediction errors in comparison to the other schemes’ errors (Figure 

4.14). Nevertheless, it has got a higher increase in the suppression rates in relation 

to maximum possible increasing. As an example, for α=0.15, TS-SOUND has got a 

median prediction error of 0.8 nautical miles per hour, which has been 14% larger 

than VB’s median prediction error. However, TS-SOUND’s suppression rate has 

been 0.938, whereas VB has got 0.798. Then, TS-SOUND’s rate has got an 

increasing of 69% in relation to maximum increasing in the VB rate (1 – 0.798). 

For α=0.10, TS-SOUND’s error has been 43% larger than VB’s error but TS-

SOUND’s has increased the suppression rate in 77% of the maximum possible 

increasing.  If we compare TS-SOUND with the PAQ and EXP schemes, the gains 

are higher.  
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Figure 4.14 - Performance of the evaluated schemes in wind speed time series 

with isolated aberrant readings. The legend and other details are in the 

caption of Figure 4.11. 

 

In time series with small local variation, as the atmospheric pressure series, VB 

scheme has got median prediction errors equal to zero, even suppressing about 

77% of the readings (Figure 4.13). However, the correspondent TS-SOUND scheme 

has suppressed about 95% of the readings, in median, at the cost of increasing 

0.05 milibars in the prediction error. Since this increasing is among the 5% 

smallest sequential changes in atmospheric pressure series, we conclude it is worth 

to adopt TS-SOUND for this type of data, getting a higher suppression rate at the 

cost of a small increasing in the prediction error. 

 

On choosing the best value for α, we have to consider how large the local 

variations in the series are. Comparing figures 4.13, 4.11, 4.12 and 4.14 (in this 

order), we conclude the larger the local variation the larger the best value for α 
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must be. In general, for values of α smaller than 0.05, the increasing in the 

suppression rate does not compensate the increasing in the prediction error.     

 

Comparing the predicted time series to the real ones (subfigures), we notice the 

robustness to the aberrant readings of TS-SOUND scheme, whereas VB suffers a 

large influence of these erroneous data.  VB’s predicted series are similar to the 

series with aberrant readings (middle subfigures), whereas TS-SOUND’s predicted 

series look like the original series, without aberrant readings, in Figure 4.5.  

 

PAQ and EXP schemes using the largest monitoring window (APAQ=15) have got 

suppression rates larger than the rates of those schemes using a smaller window 

(APAQ=5). Therefore, PAQ and EXP schemes having a larger period to evaluate the 

re-estimation of the model parameters have been a better alternative, even if the 

prediction errors have been slightly larger. Despite of having updated the base 

station more often than the other schemes, PAQ and EXP schemes have not got 

the smallest prediction errors. In other words, using these model-based 

suppression schemes is not a good strategy if the dataset may have aberrant 

readings. 

 

We have run experiments using the mean absolute deviation (MAD) as a less costly 

alternative for σ to define Zt, 
B

t TZ +  and A

t TZ +  (expressions 4.14 to 4.16).  To update the 

values of MAD, SDAR algorithm has adapted the expression in (4.11) and used the 

following expression  

 

11 .ˆ( )t t
t

tMAD MAD wXr r−= + −−                                      (4.26) 

 

Comparing the results of the experiments using both definitions for Zt, 
B

t TZ +  and A

t TZ + , 

we have observed that MAD increased the suppression rates and, as a consequence, the 

prediction errors. This increasing in the errors was especially large for wind speed, air 

temperature and relative humidity time series when these series had none or small 
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sequences of aberrant readings (1, 2 or 3 observations). Using MAD instead of σ has 

made TS-SOUND less sensitive to outliers, which made harder the detection of change-

points. On one hand, this can explain the larger predictions errors. On the other hand, 

“MAD-alternative” has decreased the odds of sending an aberrant reading.    

 

As we notice in figures 4.11 to 4.14, TS-SOUND using σ has got high suppression rates. 

An alternative that increases these rates at the cost of increasing the prediction errors is 

not interesting for the network user. Then, we have decided to keep the version of TS-

SOUND that uses σ as the measure for data dispersion. 

 

4.4.4.4.7.4   Evaluating the schemes’ robustness to aberrant clusters7.4   Evaluating the schemes’ robustness to aberrant clusters7.4   Evaluating the schemes’ robustness to aberrant clusters7.4   Evaluating the schemes’ robustness to aberrant clusters    

In this section, we compare the robustness to aberrant clusters of the suppression 

schemes. Since the SENT

Aberrant
Odds  of PAQ, EXP and VB are infinite, we have 

calculated the ratio between the suppression rates with and without aberrant 

clusters. A suppression scheme robust to aberrant readings should present this 

ratio close to 1. For a suppression scheme that suffers the influence of aberrant 

readings, this ratio is smaller than 1. 

 

Figures 4.15 and 4.16 present the ratios for the suppression schemes applied on 

atmospheric pressure and wind speed time series. In these sets of series, the 

evaluated schemes have suffered the largest and the smallest influence of aberrant 

clusters, respectively.  

 

The suppression rates of TS-SOUND scheme have not presented relevant changes, 

whereas the suppression rates of the other schemes have decreased, especially for 

PAQ and EXP schemes. This is because the model-based prediction adopted by 

PAQ/EXP schemes is quite sensitive to aberrant readings. They decrease PAQ/EXP’s 

suppression rates for two reasons: the node has to send them as detected outliers 

to the base station and they cause the re-estimation (and sending) of the new 

model parameters.    
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Figure 4.15 - Influence of aberrant readings on the suppression rate of the evaluated  

schemes applied on atmospheric pressure time series. Legend: S for TS-

SOUND (r=0.1, T = 4, α =0.15), V for value-based, P for PAQ and E for EXP 

(APAQ=15). 

 

For VB scheme, aberrant clusters make nodes send data to the base station at least 

two times: in the beginning and in the end of the cluster. Inside the cluster, 

aberrant readings tend to be similar to each other, which reduce data sending. 

This could explain why the influence of aberrant readings on the suppression rates 

has been smaller for aberrant clusters than for isolated aberrant readings. Clusters 

of aberrant readings would tend to amortize the initial and final data sending.  
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Figure 4.16 - Influence of aberrant readings on the suppression rate of the evaluated  

schemes applied on wind speed time series. Legend: S for TS-SOUND (r=0.1, 

T = 4, α =0.15), V for value-based, P for PAQ and E for EXP (APAQ=15). 

 

 

4.4.4.4.7.57.57.57.5 A note on the order of the AR model    A note on the order of the AR model    A note on the order of the AR model    A note on the order of the AR model       

The model-driven approach is an efficient solution to data collection in sensor 

networks if the monitored variable has a well-known behavior so reliable models 

can be defined (SILBERSTEIN et al., 2007a). Then, let us suppose that a 

sophisticated model is the best representation for the expected behavior of the 

sensor data. In this case, the simplicity of AR(1) model in the TS-SOUND scheme 

could degrade its performance if we compare it to the performance of a scheme 

adopting a more sophisticated model.  
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To evaluate this hypothesis, we have simulated time series according to the AR(3) 

model, which is the model that PAQ scheme uses. To generate the model 

coefficients, we have fit an AR(3) model to the time series in Figure 4.5. The series 

in Figure 4.5 represents the typical time series for each variable we have considered 

in the experiments. For each set of coefficients, we have simulated 50 time series 

with 1440 observations each, which corresponds to 50 days of monitoring with 

one reading per minute).  

 

The simulated time series have presented different behaviors because the AR(3) 

coefficients used in the simulations have come from series with different behaviors 

(Figure 4.5). Since it is necessary to analyze the schemes’ performances in groups 

of series with similar behaviors, we have had to quantify the differences between 

the behaviors of the simulated time series. To do this, we have defined the Relative 

Lagged Difference (RLDl) as  

 

( )

( ) ( )
1,.., 1,..,

1, 2,...,
,     1, 2,..., 1

t t l

l

t N t N
t t

t l l N

median

RLD l N
max X min X

X X −

= =

= + +

−

= = −
−

.                  (4.27) 

 

It compares the typical (median) difference between time periods t and t-l with the 

total range of the values. The values of RLDl range from 0 to 1. The lag l indicates 

how local is the movement we want to capture. Smaller the value of l, the more 

localized the analysis. For instance, the values of RLD10 for the time series in Figure 

4.5 are: 0.0942 (wind speed), 0.0252 (air temperature), 0.0201 (air relative 

humidity) and 0.0081 (atmospheric pressure). Therefore, time series with smooth 

changes relative to the total range (e.g., atmospheric pressure) have low values for 

RLDl, whereas abrupt changes result in a higher value for RLDl (e.g., wind speed).  

 

 



 148 

S
S
S

S
S

1.0 1.1 1.2 1.3 1.4

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Median Absolute Error

S
up

pr
es

si
on

 r
at

e

PPPP
P

1.0 1.1 1.2 1.3 1.4

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Median Absolute Error

S
up

pr
es

si
on

 r
at

e

AAAA
A

1.0 1.1 1.2 1.3 1.4

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Median Absolute Error

S
up

pr
es

si
on

 r
at

e

 
(A) 0 ≤ RLD10 < 0.025 
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(B) 0.025 � RLD10 <  0.050 
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(C)  0.05 � RLD10 <  0.075 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.17 - Summaries for the performance of TS-SOUND and PAQ schemes in data 

simulated according to the AR(3) model. Legend: S for TS-SOUND (r=0.1, 

T=4), P and A for PAQ with APAQ = 5 and 15, respectively. Each point of a 

scheme represents the summary of its performance using a different value 

for α  (0.15, 0.10, 0.05, 0.025, 0.01), in this order, following the increasing 

of the suppression rates. For PAQ scheme, the values for the correspondent 

error thresholds, εδ , have been defined as described in section 4.6.2. 
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After calculating the RLD10 for all 200 time series, we have separated them into 

three groups according to their RLD10 value and applied TS-SOUND and PAQ 

schemes on the time series of each group. The values for the parameters have 

been the same of the experiments in section 4.7.4.  

 

Figure 4.17 presents the summaries for the performance of both schemes in the 

three groups of time series. Similarly to the figures of section 4.7.1, points closer 

to the upper-left corner represent the schemes with the best performances. As in 

the experiments with real data, PAQ scheme using the largest post-monitoring 

window (APAQ=15) have outperformed the schemes using a smaller time window 

(APAQ=5). 

 

We expected that PAQ scheme could get at least prediction errors smaller than the 

errors of TS-SOUND. However, even in a scenario clearly favorable to PAQ, the 

most of TS-SOUND schemes have outperformed their correspondent PAQ schemes. 

In the time series with smooth changes relative to the total range (Figure 4.17A), 

all TS-SOUND schemes have outperformed all PAQ schemes, getting the highest 

suppression rates and the smallest prediction errors. As the time series have 

increased their local variation relative to their total range (RLD10 increases), PAQ 

schemes have got prediction errors closer to the errors of TS-SOUND schemes. 

However, for the first two values of α, TS-SOUND has still outperformed PAQ. 

    

4.4.4.4.8  Discussion8  Discussion8  Discussion8  Discussion    

Data suppression schemes are defined by an agreement between sensor nodes and 

base station about the expected behavior for the sensor readings. To decide when 

the sensor nodes may suppress their data, the schemes evaluate the prediction 

error, which is the difference between the value the sensor actually collects and the 

value predicted according to the expected behavior for the sensor readings. If the 
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collected value fits to the expected behavior, node suppresses its data. Otherwise, 

it sends data to the base station.  

 

Since the schemes for data suppression look for changes in the expected behavior 

of the sensor data, they are sensitive to aberrant readings. Transmitting these 

erroneous data is a waste of energy. In a simple suppression scheme as the Value-

based (SILBERSTEIN et al., 2007a), for instance, an aberrant point may produce 

two unnecessary messages to the base station. That is because the scheme detects 

two sequential changes of behavior: one when the aberrant readings occur and 

another when the readings get normal again.  

 

To avoid sending aberrant readings, one can propose to use a fixed threshold: 

readings smaller or greater a predefined value would be considered as erroneous 

data. However, that is a naive solution, since what would be aberrant at a time 

period of the series might not be aberrant at another time period. For instance, a 

reading of 1026 mb at time period 200 in the atmospheric pressure series (Figure 

4.5) would be considered aberrant. However, this value should not be considered 

aberrant at time period 1000. 

 

In this chapter, we have proposed TS-SOUND, a scheme for temporal data 

suppression in sensor networks that is robust to aberrant readings. TS-SOUND 

considers the data collected by a sensor node as a time series and monitors the 

behavior of this series. It adopts a procedure to detect outliers from a time series 

and the posterior classification of the detected outlier into a change-point or an 

aberrant reading. In the former case, data are sent to the base station, since it 

means a change in the expected behavior of the data series. Otherwise, data are 

suppressed.  

 

Schemes for temporal data suppression proposed in sensor networks literature 

(PAQ (TULONE and MADDEN, 2006), EXP and Value-based (SILBERSTEIN et al., 
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2007a)) suppress data by comparing the absolute value of the prediction error 

with a fixed threshold.  Using the absolute value of the prediction error allows for 

controlling its maximum value. However, if the random fluctuations around the 

expected value (local variations) are larger than the threshold for the absolute 

error, a large amount of unnecessary data will be sent to the base station and the 

suppression rates will be small. On the other hand, if the local variations are 

smaller than the threshold for the absolute error, the suppression scheme will not 

be able to capture changes in the expected behavior of the monitored data. Then, 

if the time series has a nonstationary variance, a fixed threshold for the absolute 

prediction error will not be able to work well during all data collection.  

 

TS-SOUND scheme also uses an error measure to decide if an observation is an 

outlier. However, it adopts a relative error measure, comparing the absolute error 

with the data variance, which captures the random fluctuations of the data. As a 

result, TS-SOUND is able to be adaptable to the local variations of the time series. 

The suppression rates of TS-SOUND scheme are more robust to the size of the 

local variations than the other schemes evaluated in this chapter. 

 

Besides adopting the relative prediction error, TS-SOUND scheme tries to minimize 

its sensitivity to aberrant readings using the past data through a moving average. 

Moreover, even if an aberrant reading raises the outlier alarm, TS-SOUND opens a 

post-monitoring window to avoid sending this erroneous data to the base station. 

Although this post-monitoring window introduces a delay in the data delivery, our 

experiments have shown that a small delay (four time periods) can deal with time 

series presenting aberrant clusters of several sizes.  

 

Using real data from several sources, which presents different temporal behaviors, 

we have run experiments to evaluate the suppression rates of TS-SOUND scheme 

and the prediction errors attached to them. We have used both of these measures 

to quantify the performance of a data suppression scheme. We have also 
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evaluated TS-SOUND’s robustness to aberrant readings and compared its 

performance with the performance of PAQ, EXP and VB schemes. The evaluation 

experiments have shown that TS-SOUND is more robust to aberrant readings than 

the other schemes considered in this chapter. Moreover, TS-SOUND has 

outperformed the model-based suppression schemes (PAQ and EXP) in all 

evaluated scenarios and VB scheme in the most of these situations. 

 

The Value-Based is the simplest suppression scheme and has got one of the best 

performances in our experiments. However, we can list at least three situations in 

which using TS-SOUND would be better than using Value-Based scheme: a) when 

the applications is not interested in aberrant readings; b) when the series presents 

different behaviors along the time, since VB uses a fixed error threshold and TS-

SOUND is adaptable to the local variation of the time series; c) when having high 

suppression rates is more important than having small prediction errors. 

 

To define a TS-SOUND suppression scheme, the user has to choose the values for 

three parameters: the weight of the last sensed data (r) in the on-line estimation of 

the distribution parameters, the length of the post-monitoring and past time 

windows (T) and the rigor to classify an observation as an outlier (α). As we have 

discussed in section 4.7, we have found that the value of T has not to be as large 

as the cluster size. Our experiments have pointed out to 4 as the smallest value for 

T that leads to homogeneous performances in time series with different behaviors 

and several sizes of aberrant clusters.  On the value of r, our experiments have 

shown that we obtain the best performance for TS-SOUND when the on-line 

estimation of the new values for the distribution parameters sets less weight to the 

current sensor reading. TS-SOUND schemes using r=0.1 have produced the best 

results and values of r smaller than 0.1 have got very similar results. However, 

weights larger than 0.1 have degraded the suppression rates.  
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Since the values for T and r can be constrained to some predefined values, the 

network user has to choose only the value for α.  To do this, it is necessary to 

define what is more crucial: capturing small changes (large values for α) or avoid 

aberrant readings (small values for α).  

 

The main contributions of this chapter are two-fold: a proposal for a data 

suppression scheme that is robust to aberrant readings and the evaluation of the 

performance of data suppression schemes considering not only the saved energy 

but also the quality of the data collected at base station.   

 

4.4.4.4.9 Future Directions9 Future Directions9 Future Directions9 Future Directions    

Sensor networks collect spatially correlated data, which produces areas in the 

sensors field that are spatially homogeneous.  Our future work includes a spatio-

temporal version of the TS-SOUND scheme having as its spatial basis the clustering 

algorithm in REIS et al. (2008). Instead of sending its reports to the base station, 

the nodes organize themselves into clusters that explore the spatial homogeneity 

of the data in the sensors field. Besides localizing the most part of the 

communication among the nodes, such clusters improve the quality of the cluster 

data  summaries to be sent to the base station (REIS et al., 2007).  

 

The nodes of a sensor network are prone to failures as well as the communication 

between nodes can be very noisy. Thus, a data collection protocol based on a 

suppression scheme has to address an important question: how can we distinguish 

suppressed reports from nodes failures and lack of communication between nodes 

and base station? Silberstein et al. (2007b) have proposed interesting alternatives 

to deal with this problem using Bayesian inference. We study to incorporate the 

proposed solutions in the spatio-temporal version of TS-SOUND scheme. 
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5 CONCLUSION 

Sensor networks promise to revolutionize the collection of environmental 

data and are considered to be the “next step in the understanding of the 

environment” (HART and MARTINEZ, 2006). Working in self-contained 

applications or being part a heterogeneous network, as the NASA 

SensorWeb (CHIEN et al., 2005), sensor networks represents a huge advance 

for the environmental data collection. 

 

As an emerging technology, sensor networks pose many challenges for 

several science disciplines.  One of them arises on the smart use of the 

limited energy of the sensor nodes. This issue is crucial to warrant the main 

goal of a sensor network: to deliver data with an acceptable quality while 

saving the nodes’ energy to prolong the network’s lifetime.  

In this thesis, we have examined the data suppression as a strategy to 

collect data using a sensor network. Our goal has been to improve the 

quality of data estimates delivered at the network’s base station using a 

data suppression scheme. Besides, we have proposed to use the statistical 

quality of the estimates as an additional metric to evaluate the performance 

of a data collection proposal. Therefore, a trade-off between the statistical 

quality of the estimates and the energy consumption should be used in the 

proposal’s evaluation.  

We have investigated two strategies to suppress data: spatial suppression 

(cluster-and-aggregate) and temporal suppression.  

In Chapter 2, we have found that spatially homogeneous clusters produce 

averages that estimate the members’ data better than non data-aware 

clusters. In that chapter, we have used a centralized clustering procedure. 

Based on the conclusions of Chapter 2 and considering the distributed 

feature of a sensor network, Chapter 3 has presented our proposals DARC 
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and DA-DCA. They are two distributed clustering algorithms that improve 

the quality of the data estimates if compared with usual distributed data-

aware clustering procedures.   

In Chapter 4, we have presented TS-SOUND, which is a temporal 

suppression scheme to deal with the occurrences of aberrant readings. By 

filtering these erroneous data based on the expected behavior of the data 

series, TS-SOUND has got a trade-off between suppression rates (energy 

saving) and prediction error (quality of the estimates) that is comparable 

and even superior to the trade-off of other proposal for temporal data 

suppression. Besides, we have shown that TS-SOUND is more robust to 

aberrant readings.      

As a future work, we are preparing a proposal for spatio-temporal data 

suppression scheme putting together the proposals presented in chapters 3 

and 4. 

In this thesis, we have worked with static sensor networks. Our future work 

also includes adapting the presented proposals to networks composed by 

mobile sensor nodes. 
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APPENDIX - DARC ALGORITHM  

Figure A.1 presents DARC algorithm using the methodology described in 

SANTORO (2007) to specify protocols and design distributed algorithms.  

The notation is the same we adopted in section 3.2 (figures 3.1 and 3.2). 

However, it is worth to mention that:  

1. a sensor node is denoted by lowercase letters (e.g. x, y or j); 

2. c(x) is the alarm clock of node x; 

3. v(x) is the value sensed by node x; 

4. ID(x) is the ID of node x; 

5. N(x) is list of the geographical neighbors of node x and N’(x) is 

the list of the similar neighbors of node x; 

6. MAD(x) is the mean absolute deviation of the values sensed by 

node c. 

We thank to Sr. Marcelo Gabriel Almiron (Universidade Federal de Alagoas 

– UFAL, Brazil) to make this description available.   
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PROTOCOL PROTOCOL PROTOCOL PROTOCOL             DARCDARCDARCDARC    

  

1 Status values:  S = {HEAD,NON-HEAD,SOLITARY,INITIATOR} 

2                       S_init = {INITIATOR} 

3                       S_term = {HEAD,NON-HEAD,SOLITARY} 

4 Restrictions:    SYNCRONIZED CLOCKS, BIDIRECTIONAL LINKS 

5  

6  

7 INITIATOR 

8 When ( c(x) = alarm_initiator ) 

9 Begin 

10    send <<<<hello,ID(x),c=v(x)>>>> to N(x); 

11    become WAITING_NEIGHBORS_CANDIDATES; 

12 End 

13  

14 Receiving <<<<hello,ID(y),c=v(y)>>>> 

15 Begin 

16    if ( | v(x)-v(y) | ≤ ( θ x MAD(x) ) ) then N'(x):= N'(x) ∪  ID(y); 

17    become WAITING_NEIGHBORS_CANDIDATES; 

18 End 

19  

20  

21 WAITING_NEIGHBORS_CANDIDATES 

22 Receiving <<<<hello,ID(y),c=v(y)>>>> 

23 Begin 

24    if ( |v(x)-v(y)| ≤ ( θ x MAD(x) ) ) then N’(x):= N’(x) ∪  ID(y); 

25 End 

 
Figure A.1 - Description of DARC as a distributed algorithm (to be continued). 
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26  

27 When ( c(x) = alarm_initiator + ∆TN ) 

28 Begin 

29    id := nearest_neighbors( N’(x) ); 

30    send <<<<near,c=id> > > > to N(x); 

31 CH_list(x) := CH_list ∪ id; 

32 become WAITING_HEAD_CANDIDATES; 

33 End 

34  

35 Receiving <<<<near,c=id>>>> 

36 Begin 

37     if ( id ∈ N’(x) ) then CH_list(x) := CH_list ∪ id; 

38     become WAITING_HEAD_CANDIDATES; 

39 End 

40  

41  

42 WAITING_HEAD_CANDIDATES 

43 Receiving <<<<near,c=id>>>> 

44 Begin 

45     if ( id ∈ N’(x) ) then CH_list(x) := CH_list ∪ id; 

46 End 

47  

48 When ( c(x) = alarm_initiator + ∆TT ) 

49 Begin 

50     become SELECTING_HEAD; 

51 End 

52  

 
Figure A.1 - Continuation (to be continued). 
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53  

54 SELECTING_HEAD 

55 Spontaneously 

56 Begin 

57    CH_list(x) := frenquently( CH_list(x) ); 

58    if ( CH_list(x) = empty ) then 

59        CH_list(x) := N'(x); 

60    if ( ID(x) ∈ CH_list(x) ) then 

61        CH(x) := ID(x); 

62        send <<<<head,c=ID(x)>>>> to N(x); 

63        CH_count(x) := 1; 

64        become HEAD; 

65    if ( ID(x) ∉ CH_list(x) ) then become NON_HEAD; 

66 End 

67  

68  

69 NON_HEAD 

70 Receiving <head,c=ID(y)> 

71 Begin 

72    if ( ID(y) ∈ CH_list(x) ) then CH_cand(x) := CH_cand(x) ∪ ID(y); 

73    if ( ID(y) ∉ CH_list(x) AND ID(y) ∈ N'(x) ) then 

74       CH_wait(x) := CH_wait(x) ∪ ID(y); 

75 End 

76  

77 When ( c(x) = alarm_initiator + ∆TT + ∆TA ) 

78 Begin 

79    CH(x) := nearest_member( CH_cand(x) ); 

 
Figure A.1 - Continuation (to be continued). 
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80    if ( CH_cand(x) = empty ) then 

81        CH(x) := nearest_member( CH_wait(x) ); 

82        if ( CH_wait(x) = empty ) then 

83            CH(x) := ID(x); 

84            become SOLITARY; 

85    if ( CH(x) ≠ ID(x) ) then send <<<<join,CH(x),ID(x)>>>> to CH(x); 

86 End 

87  

88  

89 HEAD 

90 Receiving <<<<join,ID(x),ID(y)>>>> 

91 Begin 

92    if ( ID(y) ∈ N’(x) ) then 

93        send <<<<data,ID(x),ID(y),c=∅>>>> to ID(y); 

94        CL(x) := CL(x) ∪ ID(y); 

95 End 

96  

97 Receiving <<<<head,c=ID(x)>>>> 

98 Begin 

99    CH_wait(x) := CH_wait(x) ∪ ID(y); 

100 End 

101  

102 When ( c(x) = alarm_initiator + ∆TT + ∆TA + ∆TJ ) 

103 Begin 

104    if ( CL(x) = empty ) then 

105        if ( CH_wait(x) = empty ) then 

106              become SOLITARY; 

107    Else 

108        j = first( CH_wait(x) ); 

 
Figure A.1 - Continuation (to be continued). 
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109       send <<<<join,j,ID(x)>>>> to j; 

110 End 

111  

112 When ( c(x) = alarm_initiator + ∆TT + ∆TA + ∆TJ + ∆TAD ) 

113 Begin 

114    if ( CL(x) = empty ) then become SOLITARY; 

115 End 
 

Figure A.1 - Conclusion. 
 

 
 


