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ABSTRACT 

Water regimes governed by seasonality are sensitive to climatological 
disturbances and human interventions. The Brazilian Cerrados are 
characterized by a well pronounced dry season, from May until September. 
During this period, natural vegetation and agricultural crops are dependable of 
groundwater. The Cerrado natural vegetation is adapted to the local climate, but 
the cash-crops cultivated in the region not. Irrigation techniques are responsible 
for the maintenance of high productivities during the whole year and the 
availability of water resources made it possible. Nowadays, with almost all 
Cerrado vegetation replaced by agricultural crops, information about the spatio-
temporal dynamics of the water table is important to optimize and balance the 
interest of economical and ecological purposes in the Brazilian agricultural 
frontier. The aim of this thesis is to characterize water resources in a Brazilian 
Cerrado area. We model the spatio-temporal variation of water table depths in 
the Jardim River watershed. This is a representative Cerrado area in the 
Brazilian Federal District, where almost all natural vegetation was replaced by 
agricultural crops and irrigation has substantially increased during the past 
years. This information is needed to monitoring the behaviour of the water 
levels due to land use, human interventions and climatic changes. Also, to 
evaluate risks associated with water levels, and to present strategies in water 
management. For this purpose we applied geostatistical methods and time 
series modelling to observed water table depths series, describing water table 
dynamics and accounting for uncertainty. The results presented here show how 
to estimate the water volume lost during a specific season and delimitation of 
favourable and unfavourable areas to water use, using a linear 
coregionalization model. We showed how to apply the PIRFICT time series 
model to the Cerrado situation, accounting for systematic changes in water 
table depths and presenting how to predict risks of extreme water levels for 
agriculture in the region. These results aim at contributing to improve water 
management, when using Cerrado areas for crop production.  
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

MODELAGEM ESPAÇO-TEMPORAL REGIONALIZADA DE ALTURAS DE 
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RESUMO 

Regimes hídricos governados pela sazonalidade são sensíveis a distúrbios 
climáticos e intervenções humanas Os Cerrados brasileiros são caracterizados 
por uma estação seca bem pronunciada, de maio a setembro. Durante esse 
período a vegetação natural e os campos agrícolas são dependentes da água 
subterrânea. A vegetação dos Cerrados é adaptada ao clima local, mas os 
campos cultivados na região não. Técnicas de irrigação são responsáveis pela 
manutenção das altas produtividades durante todo ano, e a disponibilidade de 
recursos hídricos torna isso possível. Atualmente, com quase toda vegetação 
de Cerrado substituída por campos agrícolas, informações sobre a dinâmica 
espaço-temporal dos níveis freáticos é importante para otimizar e balancear os 
interesses econômicos e ecológicos na fronteira agrícola brasileira. O objetivo 
dessa tese foi caracterizar os recursos hídricos em uma área de cerrado, 
modelando a variabilidade espaço-temporal das alturas de lençol freático na 
bacia do Rio Jardim. Essa é uma área representativa de Cerrado localizada no 
Distrito Federal, onde quase toda vegetação natural foi substituída por 
agricultura e onde a irrigação aumentou substancialmente nos últimos anos. 
Essa informação é necessária para monitorar o comportamento dos níveis de 
água em função do uso do solo, intervenções humanas e mudanças climáticas. 
Também para avaliar o risco associado aos níveis de água, e para apresentar 
estratégias para o manejo da água. Com esse propósito, aplicam-se métodos 
geoestatísticos e modelos de séries temporais a dados observados de alturas 
de lençol freático, descrevendo a dinâmica do lençol e considerando a 
incerteza contida nos modelos. Os resultados apresentados aqui mostraram 
como estimar o volume de água perdido pelo sistema aqüífero durante uma 
estação especifica e delimitar áreas favoráveis e desfavoráveis para o uso da 
água, através de um modelo linear de corregionalização. Também se 
apresentou a aplicação do modelo PIRFICT de séries temporais nos Cerrados, 
verificando mudanças sistemáticas nos níveis freáticos e apresentando como 
estimar riscos de níveis extremos de alturas do lençol freático para agricultura 



 

na região. Esses resultados visam contribuir na melhora do manejo de água ao 
se utilizar de áreas de Cerrado para produção agrícola. 
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1 INTRODUCTION 

1.1  Background 

Managing natural resources for sustainable development is a worldwide 

challenge. Precious metals, gemstones, oil and gas are not the only major 

reasons of current conflicts. Access to land and water are just as important. The 

natural availability of water has decreased around the world. Many regions are 

experiencing water scarcity, several of them for the first time. One reason for 

water scarcity is the constant water demand by agriculture since modern 

agriculture consumes soil, seeds, fertilizers, water, energy, chemical products, 

people, and infrastructure. Farmers are dependent on a combination of these 

factors to reach high productions during all year and keep the activity profitable, 

even facing difficulties from climate change and competing claims on natural 

resources.  

 

To support water management, we need to monitor water resources, model 

hydrological processes, and simulate the effects of public policies. To develop 

useful hydrological models, we need to consider the uncertainty of the 

predictions to increase the value of the models in decision-making.  

 

In this thesis, we will consider the problem of modelling water availability for 

agriculture. A key idea we use is water table depth. Observations on water wells 

are one dimension observations on a continuous surface of phreatic water. 

“This surface is referred to as water table. The depth of water table below the 

surface is called water table depth” (Knotters, 2001). Water table depth has 

significant importance for agricultural and ecological potentials. Many conditions 

for agriculture are related to water table depths, as soil trafficability, water 

availability and mainly soil conditions. They influence several soil 

characteristics, like temperature, degree of aeration, concentration of nutrients, 

degree of acidity, and thickness of the root zone. In contrast with water table 

depths, these features are hard to be observed (Knotters, 2001). 
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To balance the needs of economic land use and ecological conservation, 

knowledge about the spatio-temporal dynamics of the water table is important 

(Von Asmuth and Knotters, 2004). Information on water table depths helps 

assessments in areas, such as on desiccation of natural areas, water shortage 

in agriculture, fertilizers leaching, and drinking water or urban water supply. 

Reliable estimates of water table depth contribute to a more sustainable and 

equitable use of natural resources, especially if they account for uncertainty and 

assess risks.  

 

In some countries, the water table depth is intensively monitored because of its 

significance. In the Netherlands, for instance, the seasonal variations of water 

table depths influence agricultural production because of its shallow depth. 

Tanco and Kruse (2001) predict the seasonal water table variation in Argentina, 

presenting a statistical method that aims to mitigate impacts of extreme events 

(like floods and droughts). Leduc et al. (1997) present results about aquifer 

recover in southern Niger. Many times authorities just take actions to 

understand water table dynamics after some problem has occurred. The 

network of water wells and boreholes used in Leduc et al. (1997) for example, 

was set up after the severe drought of 1970s and early 1980s in the country. 

Sun et al. (2000) studied water table rises after human interventions in the 

wetlands of northern central Florida. In Brazil, several studies have been 

conducted in the different ground water systems of the country. Here, we gonna 

refer just to works in the study region, the Brazilian Cerrados. Souza and 

Campos (2001) studied the importance of the regolith in the porous domain of 

an aquifer and how the differences in hydraulic conductivity in this material 

influence the Paranoá aquifer system recharge. Lousada and Campos (2005) 

presented four conceptual models to explain the groundwater flow conditions in 

the Brazilian Federal District based in hydrogeological information. Cadamuro 

and Campos (2005) proposed solutions for artificial aquifer recharge in areas 

with problems availability after human intervention in the hydrological system. 
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1.2    The Brazilian Cerrado 

The Cerrado is a fragile environment and the current Brazilian biggest grain 

belt. Human activities have changed the region during the past 40 years, and 

exploited its natural resources. In the following discussion, we discuss the need 

for information about water resources in the Cerrado region, to provide tools for 

sustainable water management. 

 

1.2.1   Characterization of the Brazilian Cerrado: a survey 

The Cerrado region is the most extensive woodland-savannah in South 

America. The Brazilian Cerrados extend from the northern margins of the 

Amazonian evergreen forests to outliers on the southern borders of the country 

with extensions into Paraguay and Bolivia. Placed at the central plateau, it 

covers 22% of the Brazilian territory (Figure 1.1) or around 2 million km2 

(Jepson, 2005). This ecosystem is a biodiversity hotspot (Myers, 1988, 1990).  

 

 

 

Figure 1.1 - Brazilian territory and the Cerrado area. 
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The Cerrado is one of 25 biologically rich areas around the world that have lost 

at least 70% of their original habitat. The remaining natural habitat in these 

biodiversity hotspots amounts to just 1.4 percent of the land surface of the 

planet, yet supporting nearly 60 percent of the world's plants, birds, mammal, 

reptile, and amphibian species. The Cerrado supports a unique array of drought 

and fire adapted plant species and many endemic bird species and large 

mammals that are competing with the rapid expansion of Brazil's agricultural 

frontier, which focuses mainly on soybeans and corn. 

 

The climate in the Cerrados presents seasonal patterns. The mean annual 

temperature is 22 0C in the south of the region and 27 0C in the north (Goedert, 

1989). The region receives annual rainfall between 1300 and 1600 mm, 

concentrated in six to seven months, starting in October and finishing around 

April. A pronounced dry season characterizes the rest of the year. As in the 

whole intertropical zone, dry spells (locally called “veranicos”) can occur during 

the wet season, getting crops in early stages of development, reducing 

productivity and affecting the local economy (Assad et al., 1993). Due to its 

random nature, rain is one of the factors that most influence agricultural 

production (Assad, 1994). 

 

Most of the soils under the Cerrado are highly weathered Oxisols (46%), 

Ultisols (15%) and Entisols (15%), posing serious limits for crop production 

because of low natural soil fertility (Lopes, 1996). In general the soils are deep 

and present high aluminium saturation and high phosphorus fixation capacities. 

Many crops have shallow roots due to aluminium toxicity and calcium shortage 

in subsurface soil layers. 

 

The natural vegetation has developed adaptations to the seasonally wet rainfall, 

acidic soils, and aluminium toxicity. Plants metabolize throughout the year, 

drawing on soil water reserves, and can withstand short-lived fires. Fire has an 

important role on the dynamics, maintenance and evolution of savannas, being 
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in the Cerrado a major determinant of soil characteristics, nutrient cycling and 

plants dynamics (Mistry, 1998). The Cerrado has many types of physiognomic 

forms, from open formations, dominated by dense and continuous herbaceous 

layer nearly treeless grasslands, to closed formations, dominated by woodland 

of semideciduous trees (Furley, 1999). The natural vegetation is well adapted to 

drought presenting deep roots. 

 

1.2.2   The Cerrado as Brazil’s major grain belt 

To understand the current landscape of the Cerrado it is important to consider 

recent agricultural expansion in Brazil. Until the mid1950s, the lack of 

infrastructure constrained any significant commercial development. This 

scenario changed drastically after the construction of Brasília, in the heart of the 

Cerrado region, when highways and railways linked the new capital to the main 

Brazilian cities. Besides, government policies gave a large boost to agricultural 

modernization and land transformation, stimulated by subsidized credit, tax 

breaks and development of new technologies (Klink and Moreira, 2002).  

 

Expansion of modern agriculture and large-scale ranches changed the 

characteristic landscape and ecosystem of Cerrado. Extensive cattle fields and 

agricultural crops (mainly corn, soybeans and cotton) established in the Cerrado 

created positive socio-economic impacts. Agricultural production for Brazil’s 

domestic and export markets has increased, with enlarged planted areas and 

increasing productivity. Local economies were diversified, municipal revenues 

increased and welfare services improved in some localities. These areas have 

become Brazil’s most important grain belt, although facing cover change rates 

much higher than in the Amazonian rainforest (Oliveira et al., 2005). Current 

deforestation ranges from 22000 to 30000 km2/year (Machado et al., 2004). 

Brazil’s Forest Code requires for a rural property that only 20% of Cerrado 

vegetation should be preserved in its natural state as “legal reserve”. In the 

Amazon rainforest this portion is 80% (Klink and Machado, 2005). Machado et 
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al. (2004) presented in a recent survey using MODIS imagery data from 2002 

that 55% of Cerrado was already cleared or transformed for human uses.  

 

Ecosystem experiments and modelling show that this change in land cover is 

altering the hydrology and affecting carbon stocks and fluxes (Klink and 

Machado, 2005). Shallow-rooted monocultures, which are less well adapted to 

drought, have replaced a complex wood and grass ecosystem. Cerrado 

agriculture is profitable, and agricultural expansion will continue to need 

improvements in techniques and infrastructure. Using fertilizer and lime to 

correct soil for loss of crop productivity caused by the high aluminium levels, 

farmers have converted vast areas of land to agriculture fields. Their need of 

water supply by irrigation techniques is likely to change the hydrological system 

(Klink and Moreira, 2002). With irrigation increasing, the water table falls, and 

so risks of water shortage appear. Preserving these resources is important also 

because the Cerrado connects the three main river basins of the country 

(Amazon, Prata and São Francisco). Rivers and brooks are particularly affected 

by human occupation. Rivers near cities are used as depository of wasting and 

sewage while rivers near agricultural areas have their banks eroded, causing a 

progressive decline in the flowing of water. In regions like the Federal District, 

groundwater has big importance on public water supply. The water exploitation 

increased substantially after the second half of the 80’s. There are estimations 

about the number of deep tubular wells in the area, which increased around 

three times since this period, most of them to supply new condominiums, 

industries and communities (Campos, 2004). 

 

Valuable knowledge gained through research can be disseminated in the region 

to best agricultural practices. Introduction of minimum tillage systems is a good 

effort to control erosion, keep soil moisture and weed control. This method 

prevails in the better developed agricultural Cerrado zones. Policy formulation 

must make use this knowledge of ecosystem functioning since landscape 

changes has serious and long-term implication for water, carbon cycle and 



 31 

possible even for climate changes (Klink and Machado, 2005). Sound policies 

are needed both for conservation of natural resources and to keep the 

productivity of cash crops. 

 

The above discussions point to the need for research on water management on 

the Cerrado as a means of supporting sustainable development. This is the 

motivation of the work which resulted in this thesis. 

 

1.3    Problem definition 

Risk assessment aims at finding best solutions for water management in areas 

of conflicting interests on the water use. Therefore, there is a demand for 

methods which enable to describe the water table dynamics. Deterministic 

methods to describe water table dynamics are less appropriate for risk 

assessment, because they underestimate the fluctuation since they do not 

account for random errors. We observe water table depth in wells and 

boreholes, at various locations and time steps. A time series of water table 

depths reflects the water table dynamics given the meteorological and 

hydrological conditions during a typical monitoring period of a few years. The 

data obtained in this period depend on the prevailing climate conditions of the 

monitoring period. To support strategic decisions in water policy, we need to 

model water table dynamics over a large time period, such as 30 years. Thus, 

we need to extrapolate the observed time series of water table depths to a 

longer series of 30 years length, from which we can calculate the characteristics 

of water table depths. These simulated long-term series of water table depths 

can be applied in risk assessments, using the uncertainty estimates. 

 

An observed time series represents the water table conditions at a certain point 

in space. To support water management, we need information for any location 

over an area. Thus, we need to predict the spatio-temporal surface of water 

table depth, based on the time series of the wells and boreholes. These 
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predictions need to incorporate extra information related to water table depth, 

and to account for the uncertainty. 

 

1.4    Hypotheses, objectives and contributions 

There is a need for water management technologies in the Cerrado. These 

technologies should contribute to increasing the probability of success when 

using Cerrado areas for crop production. These challenges lead to some 

specific scientific questions: 

a) Can the change in water volume over a certain time lag be estimated, 

considering the spatio-temporal correlations between time steps and 

observation points? 

b) Can water table depths be monitored in the Cerrado to assess 

systematic changes of water resources due to land use?  

c) Can risks of extreme water levels for agriculture be predicted, and can 

the uncertainty be incorporated into these predictions?  

 

To address these questions, the following hypotheses are considered: 

a) The spatio-temporal correlation from water table depths can be 

modelled in the scope of the linear model of coregionalization 

b) The seasonal variation of water table depth in the Cerrado can be 

modelled using time series models, assuming a linear relationship 

between precipitation surplus/deficit and water table depths.  

 

The aim is of this thesis is to characterize water table depths in the Cerrados in 

the watershed scale. A space-time geostatistical approach was applied using 

space random vector fields, and time series modelling to characterize water 
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table depths in the Jardim River watershed. The water table depth was 

monitored for more than 3 years, from October 16, 2003 to March 06, 2007. 

This thesis will show that geostatistical tools provided efficient estimates of 

water content and that time series modelling allowed assessment of change in 

water table depths and provided information for policy making and water 

management in the Brazilian Cerrados. We consider and account for model’s 

uncertainty. 

 

1.5    Thesis layout 

This thesis is structured as follows: 

a) Chapter 2 presents the study area and data set. 

b) Chapter 3 presents the characterization of the aquifer volume during a 

season. 

c) Chapter 4 presents time series modelling accounting for systematic 

changes in water table depths over the monitored period. 

d) Chapter 5 presents a simulation study case to predict behaviour of 

water table depths and account for risk in water management. 

e) Chapter 6 presents the conclusions of this thesis, recommendations 

and suggestions for future work. 
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2 STUDY AREA AND DATA SET 

2.1    Jardim River watershed 

The Jardim River micro basin is a representative Cerrado area in the eastern 

part of the Brazilian Federal District, between latitudes 15040’S and 16002’S and 

longitudes 47020’W and 47040’W. This basin is part of one of the most important 

basins of Brazil: the São Francisco Basin. The Jardim River waters reach São 

Francisco River after flowing into the Preto River and Piracatu River, 

subsequently. The total drainage area of this basin is 53,796 ha. The study area 

is the high portion of the Jardim River watershed, an area of 10,121 ha which 

represents 18.8% of the total basin. The main cultivations in the area are grains 

crops (soybeans, corn, wheat and beans), coffee, cotton, fruits, and horticulture 

products, as well cattle, milk and poultry (Gomes-Loebmann et al., 2005). 

 

Following Köppen’s classification, the climate is Aw (Codeplan, 1984). The dry 

and wet seasons are well defined, with the rainfall concentrated between 

October and April. The annual mean precipitation is 1386 mm, for the last 33 

years. The daily average temperatures vary from 18 to 300 C. Steep slopes are 

not present in the Jardim River watershed. The landforms (Embrapa, 1999) are 

mostly flat (slopes varying from 0 to 3%) or gently sloping (slopes between 3 

and 8%), representing 53.33 and 43.05% of the basin area, respectively. The 

maximum elevation observed was 1176.85 m and the minimum 889.15 m, 

above sea level. 

 

Agricultural crops replaced almost all natural vegetation of the Jardim River 

watershed and the use of irrigation systems substantially increased in this 

region during the past years (Gomes-Loebmann et al., 2005). The vegetation 

varies from gallery forests close to the river course, some spots of woody 

savannah (Cerrado) and open woody savannah (campo Cerrado), scrubby 

savannah (campo sujo) and open grassland (campo limpo). 
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2.2    Geology 

The geology of the Federal District was recently revised by Campos & Freitas-

Silva (1998). Three lithological environments compose Jardim River watershed: 

Canastra, Paranoá and Bambuí groups. Canastra and Paranoá groups have 

meso/neoproterozoic ages, and Bambuí group has neoproterozoic age. Two 

mount systems acted in the geology of the region. Paranã system is responsible 

by the positioning of Paranoá group over Bambuí group, and São 

Bartolomeu/Maranhão system put Canastra group over Paranoá and 

consequently Bambuí groups. The environment in the area consists of low-

grade metamorphic rocks. Slates of varying colours, metasiltstone, and 

quartzite beds are present.  

 

2.3    Hydrogeological domains 

In Federal District, this geology characterized by metamorphic rocks covered 

with expressive pedological layers configures two main aquifer reservoirs 

systems: Porous and Fractured domains (Campos, 2004). The porous domain 

is characterized by the geological layer where the water is storage in the empty 

spaces of the rocky bodies (saprolite). This layer is placed over the 

metasedimentary rocks of the Canastra, Bambuí and Paranoá groups, which 

corresponds to the fractured aquifers in the area. In the fractured domain, the 

water takes place in the physical discontinuities in the rocks.  

 

2.3.1Fractured domain 

The Fractured domain in the Jardim River watershed comprises four systems: 

Paranoá (ubsystems R3/Q3 and R4), Canastra (subsystem F) and Bambuí 

(Figure 2.1).  

 

a) Paranoá subsystem R3/Q2  
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System Paranoá is situated in the northern part of the basin, and can be divided 

into two subsystems. Subsystem R3/Q2 consists of sandy metarhythmites and 

medium quartizites. These materials favour to keep open cracks in the system. 

Thus, the high number of water entrances causes high water fluxes in the 

section, resulting in a high local hydrogeological importance. 

 

b) Paranoá subsystem R4  

Subsystem R4 consists of pelitic rocks and clay. These materials provide low 

the water flux. The local hydrogeological importance is moderate.  

 

c) Canastra subsystem F 

The Canastra system is represented by subsystem F. It covers an extensive 

area in the western part of the Jardim River basin. This system is lithologically 

associated to phyllits with high porosity and presents bedrock fractures and 

foliation. It facilitates water percolation, resulting in areas with big aquifer 

recharge potential. However, the local hydrogeological importance is moderate.  

 

d) Bambuí system 

This system is characterized metasiltites and clay metasiltites, and is present in 

the eastern part of the basin. The aquifer has moderate local hydrogeological 

importance. 

 



 38 

 

 

Figure 2.1 - Fractured (left) and Porous (right) hydrological domains on Jardim River 

watershed (Lousada, 2005). 

 

2.3.2Porous domain 

The Porous domain comprises three systems: P1, P2 and P4 (Figure 2.1).  

 

a) System P1  

Located in the extreme north part of the basin, this system is associated with 

sandy metarhythmites and medium quartizites from Paranoá group. The 

resulting soils are Red Yellow Latosols and sandy soils in small portions. The 

aquifer has high local hydrogeological importance. The hydrological importance 

is measured at aquifer recharge and water exploration potentials.  

 

b) System P2  

This system comprises the major part of the basin, and is associated with pelitic 

rocks. This material is highly susceptible to chemical weathering and it favours 
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to decompose the underlying rock, originating a thick pedologic covering. The 

resulting soils are Red Latosols, sandy to loamy, with moderate porosity. The 

aquifer has moderate local hydrogeological importance.  

 

c) System P4  

This system is associated to pelitic rocks (schists and phyllits) which produced 

shallow and rock soils (mostly Cambisols) close to drainages and waterheads. 

The local hydrogeological importance is very low. 

 

2.4    Soils 

Reatto et al. (2000) presented a large-scale soil survey of Jardim River 

watershed in the scale of 1:50,000. The soil classes identified in the high portion 

of the basin are Red Latosol, Red Yellow Latosol, Haplic Cambisol, Haplic 

Plinthosol, Haplic Gleysol and Quartzarenic Neosol. These soil classes are 

presented in Figure 2.2. 
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Figure 2.2 - Soil types over the Jardim River watershed (Reatto et al., 2000). 

 

Red Latosols (LV) are mineral soils, acid (pH around 5), deep (>1,5 m), with 

thick B horizon (>50 cm), high water permeability  and well drained. Clay 

content varies from 67 to 75%, base cation concentration between 4 and 49% 

and aluminium concentration between 2 and 58%.  

 

Red Yellow Latosols (LVA) have almost the same characteristics as LV, but are 

less clayey. The clay content is between 38 and 71%. The organic matter in 

Latosols is low.  
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Haplic Cambisols (Cx) are shallow soils, with incipient B horizon, low 

weathering degree, moderately drained, and texture and chemical 

characteristics variable. The clay content is between 46 and 63%. Mostly, the 

cambisols of Jardim River watershed are poor soils, degradated, with low water 

storage capacity and so low agricultural potential. 

 

Haplic Plinthosols (Fx) in the area are soils with slow water movement, flooding 

susceptible, and imperfect drainage. Its plintic horizon, with red spots from iron 

reduction, can be a limit for water permeability and root development 

occasionally. Clay content is around 25%, base cations concentration around 

6% and aluminium concentration around 32%.  

 

Haplic Gleysols (Gx) are hydromorphic soils, close to bad drained or flood 

susceptible areas. These soils are not well developed. The water table is close 

to the surface almost all year. It presents a gray layer from redox reactions in 

the soil and low organic matter content. The clay content is between 48 and 

53%, concentration of base cations between 3.47 and 11.37% and aluminium 

concentration between 81.68 and 95.33%.  

 

Quartzarenic Neosols (RQ) are deep soils (more than 2 m) with sandy texture 

(maximum 15% of clay), originated by quartzo minerals, absente of B horizon 

and well drained. The base cations concentration is around 4% and aluminium 

concentration around 79%.  

 

2.5    Data set 

2.5.1   Water table depths 

To monitor water table depths (WTD), 40 wells were originally drilled in the area 

(Figure 2.3). The locations were selected purposively, to cover the range of soil 

types in the area and in a try to characterize the different responses of water 

table depths (Lousada, 2005). Some wells closed and others presented dryness 
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after the installation. It can be result of a hydraulic barrier between porous and 

fractured domains in areas where there is clay vertical migration causing 

narrowing of the water flux in the fractures and closing the connection of the 

systems (Lousada and Campos, 2005). These wells were excluded from further 

analyses. 

 

 

 

Figure 2.3 - Observation wells distributed over the Jardim River watershed. 

 

The water table depths were observed semi-monthly from October 11, 2003 

until March 06, 2007, resulting in series of 55 more or less regularly spaced 

semi-monthly observations, during a monitoring period of 1240 days. The wells 

filters levels were variable with the soil depth. 

 

2.5.2   Meteorological time series 
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Series of 33 years length of precipitation and potential evapotranspiration were 

available from the EMBRAPA Cerrados climate station. These data were 

available at www.agritempo.gov.br, from 1974 until 1996 in a monthly frequency 

and from 01/11/1996 until the present day in a daily frequency and from This 

climate station is located at 10 km distance from the basin. For the period from 

1974 until 1996 a monthly data are available, and for the period from 1996 until 

March 06, 2007 daily data is available. Climate reports for agriculture about the 

region were frequently consult at www.cpac.embrapa.br/tempoeagri/ 

tempoeagri.html. Every week new bulletins report the climatological water 

balance and soils conditions for agricultural practices. 

 

2.5.3   Digital maps 

The digital soil map from Reatto et al. (2000) is the pedological base for this 

study (Figure 2.2). The hydrogeological features (Figure 2.1) the digital 

elevation model (DEM) with resolution of 15m (Figure 2.4) are available from 

Lousada (2005). 

 

Ancillary information related to the actual land sources was derived from 

Landsat 5 images. Three images from July 23, 2005, July 26, 2006 and January 

18, 2007, orbit/point 221/71, were inspected and used to classify the actual land 

use in the region. Using maximum likelihood classification and expert 

knowledge, the supervised image classification results in a land use surface, 

divided in three classes: Agricultural Crops, Pasture and Cerrado Vegetation. 

The class Agricultural Crops includes all kinds of agricultural products that are 

cultivated in the area: small areas cultivated with horticultural products, such as 

carrots, lettuce and tomatoes, and big areas cultivated with products such as 

corn, soybeans, cotton, coffee and sugarcane. All these crops demand more 

water than the original vegetation. The agricultural practices are intensive, 

resulting in three production cycles during one year when irrigation is applied. 

Also, the land use in the class Agricultural Crops is very dynamic because of 
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agronomical recommendations, rotation schemes or simply prices. The class 

Pasture is considered to be less water demanding than Agricultural Crops, but 

more demanding than the natural Cerrado vegetation. These areas are not as 

dynamic in land use changes as the Agricultural Crops. Figure 5 presents the 

classified land use map. This surface is considered as the land use for the 

region during the monitoring period, ignoring possible changes in the 

established classes of land use. 

 

 

 

Figure 2.4 - Digital elevation model (left) and image classification for actual land use 

(right) on Jardim River watershed.  

 

2.6    Monitoring scheme 

This section presents the monitoring scheme followed in this research. We refer 

to scheme as the entire plan, all the decisions and all information relevant to 

data acquisition, data recording and data processing. De Gruijter et al. (2006) 

presented issues to develop a complete sampling and monitoring scheme. The 

authors present seven principals considered essential for a good design 

scheme for survey and monitoring. These principles are i) develop a complete 
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scheme; ii) structure the design process; iii) pay attention to practical issues; iv) 

employ prior information on variation; v) balance the various sources of error; vi) 

anticipate changing conditions during monitoring; and vii) calculate the sample 

size correctly. 

 

2.6.1   Detailed analysis and specification of the objective 

a) Target universe: Jardim River watershed. 

b) Domains of interest: high portion of the watershed (local scale). 

c) Target variable: water table depths. 

d) Target parameters: water table depths at locations and given time 

steps, temporal trends, probabilities of exceedance of critical levels 

and critical days. 

e) Target quantity: water volume (m3.ha-1) and water table depths (meters 

bellow surface) that are exceeded at specific time steps at predefined 

probability levels. 

f) Type of result: Quantitative (spatial prediction of water table depths 

and estimation of water table statistical characteristics). 

 

2.6.2   Quality measure 

Error variance in spatial prediction and half-width of a 95% confidence interval 

in estimation of statistical characteristics. 

 

2.6.3   Constrains 

Limited budget to drill wells. 

 

2.6.4   Prior information 
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a) Sampling frame: soil map scale 1: 50.000 (paper and digital). 

b) Miscellaneous information: Digital Elevation Model (DEM) with 15 m 

resolution, geological maps and a climate station (precipitation, 

evapotranspiration, temperature). 

c) Model of variation of the target variable: linear model of 

coregionalization and regionalized time series models for water table 

depths, developed from available sample data. 

 

2.6.5   Sample support 

Constant and continuous (predefined wells to measure the spatial variation and 

semi-monthly for time sampling water table depths). 

 

2.6.6   Assessment method 

Field measures directly in the wells, from the surface using in situ groundwater 

probe. 

 

2.6.7   Composite sampling 

No composite sampling, measures taken in situ. 

 

2.6.8   Design-based or Model-based inference 

Model based. The choice between Design-Based and Model-Based inference 

lies in the fact we need the values distribution over the entire universe, or in 

other words, mapping. 

 

 

2.6.9   Sampling pattern type 
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Forty fixed wells at selected locations and covering specific strata (soil classes) 

derived from a soil map (scale 1: 50.000), where measures are taken with semi-

monthly frequency. 

 

2.6.10 Identification of the actually selected sample 

Reference to a map with the wells locations and a table of sampling times. 

 

2.6.11 Protocols on data record and fieldwork 

Data record directly on a spreadsheet in paper or electronic in a palm top. 

 

2.6.12 Method to be used for statistical inference 

Linear model of coregionalization, time series modelling, regionalization of the 

calibrated models and calculation of the percentiles prediction intervals for 

water table depths kriging predictions and associated kriging variances. 

 

2.6.13 Prediction of operational costs and quality of results 

Ex-ante evaluation. 
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3 UNCERTAINTY MODELING IN SPATIO-TEMPORAL ANALYSIS OF 

WATER TABLE DEPTHS IN A WATERSHED*  

3.1    Introduction 

Changes in water resources availability have direct impacts on environment and 

agricultural land use. The aquifer exploitable volume is a decision-making 

variable to be measured as part of local water management planning. Many 

times water resources present influences not just inside a watershed, but also 

regional, municipal and even state importance (Hoffmann and Jackson, 2000).  

The fragility in water resources exploration lies in groundwater recharge, which 

sometimes does not present the same speed of extraction. It can result in 

exploration of aquifer permanent reserves, with risks even of exhaustion when 

the caption is not properly monitored. Water loss and aquifer recharge present 

variability in space due to the absorption and water retention differences in the 

soil (given by soil classes, texture, infiltration rates, for example). Also, these 

variables present variability in time, from climatic and seasonal effects 

(precipitation, evapotranspiration) and from the water use. 

 

Groundwater has significant importance in the Brazilian Cerrado agriculture, 

since the region is characterized by wet and dry periods well defined over the 

year. Aquifer regulatory reserves are responsible for supplying water for 

irrigation in the dry period. The reserves behaviour depends on seasonal effects 

of rainfall. How much water is lost by the system at the dry season and how 

much it recovers in the rainy period are fundamental subjects for water 

management. We are considering a water volume decrease in the dry season 
                                                 
* This chapter is a translation to English of the paper “Modelagem de incertezas na análise 
espaço-temporal dos níveis freáticos em uma bacia hidrográfica”, Manzione, R. L.; Druck, S.; 
Câmara, G.; Monteiro, A. M. V., published in the Brazilian Journal of Agricultural Research, v. 
42, n. 1, p. 25-34, 2007. ISSN: 1678-3921. 
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and recharge during the wet season (Oliveira et al., 2005). These reserves are 

important not only for irrigation but also for natural vegetation maintenance and 

for the regional aquifer system (Klink and Machado, 2005). The water volume 

recharge quality during the wet period is an important aspect and should be 

analyzed. The risk can be accessed by modelling the uncertainty associated 

with water estimations, allowing analysts to verify possible extreme situations 

(Goovaerts, 2002). 

 

The aim of this study is to analyse how water table depths vary in space and 

time, and modelling their dynamics over a certain period in time. The target 

variable is the increases or decrease of water levels (in meters) from one month 

to another at each observed well. The work used space-time geostatistical 

procedures (Goovaerts and Sonnet, 1993; Papritz and Fluhler, 1994; Kyriakidis 

and Journel, 1999) which consider the coregionalization structure between 

monthly water table depths differences during the dry season of 2004 (from May 

until September) in the Jardim River watershed. In the Jardim River watershed, 

the water resources have been used intensively by irrigation systems and 

without an equal division of the available water. Irrigation systems are installed 

even in places with low superficial water availability or close to river springs, 

what increase risks of aquifer recharge (Dolabella, 1996). These techniques 

allow to estimate the explored aquifer volume during the period. Also, they allow 

to account for uncertainty to enable risk modelling (Goovaerts, 1997) and to 

create scenarios for water management and reserves evaluation. 

 

3.2    Materials and methods 

One of the biggest challenges in groundwater modelling is water table 

characterization in space and time. Geostatistics provide three conceptual 

points of views to solve problems with space-time (ST) indexation (Kyriakidis 

and Journel, 1999): i) models of simple random functions integrating the space 

and time components (Christakos and Raghu, 1996); ii) vectors of space 
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random functions (Goovaerts and Sonnet, 1993); iii) vectors of time series 

(Rouhani and Wackernagel, 1990).  

 

Multivariate geostatistics present ST procedures which priory the domain in 

which information is more abundant (Goovaerts and Sonnet, 1993). In our case 

study, the field of largely available information is the spatial. The adopted 

hypotheses were: i) at a time instant, the water table depths behave as a 

regionalized variable realization of a random field, with a constant mean and a 

variance described by a stochastic component. Also, it is supposed space 

correlation among data. ii) at subsequent time instants, the realizations of the 

random field are correlated and modelled as a finite collection of space random 

functions temporally correlated. 

 

The model starts with observing ( ){ }Ttntz ,...,1;,...,1;, ==ααu  at n  points αu  in 

space and T  points t  in time. Each observed value is understood as a 

realization of a random variable (RV). Each set of realizations of RV’s in certain 

time step is a particular realization of a ST random function 

(RF) ( ){ }TD),(where,, ×∈ttZ uu . D refers to spatial domain and T to temporal 

domain where this function takes values. Based on the previous hypothesis, this 

function was modelled as a finite realization for each time step of T spatial 

random functions, temporally correlated (Goovaerts and Sonnet, 1993; Papritz 

and Fluhler, 1994). In other words, for each t there is a RF representing the 

target variable and these functions are correlated amongst themselves. The 

following representation is adopted for the ST processes ( )tZ ,u : 

 

                                
( ) ( )[ ] ( ) ( )[ ] '

1 ,...,,...,1,, uuuu Tt ZZTtZtZ ===                          (3.1) 

 

Considering a set of T RF, each one represented by a time step t, 

where Tt ,...,1= . Supposing intrinsic stationarity, the process is first order 

stationary and the variogram can be calculated for each t RF as: 
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( )[ ] 0)( =+− huu tt ZZE  

and                                                                                                                  (3.2) 

 

( ) ( ) ( ){ } ( ) ( ){ }[ ] TttZZZZE jitttttt jjiiji
,...,1,

2

1
=+−+−= huuhuuhγ  

 

It means that correlation between any data, in two different time steps and 

separated by the same spatial lag h is written as a variogram matrix ( )hΓ : 
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The values of variogram matrix are estimated by: 

 

                       ( ) ( ) ( )[ ] ( ) ( )[ ]huuhuuh αααα +−+−= ∑
=

jjiiji tt

n

tttt zzzz
n 1

1
ˆ

α

γ              (3.4) 

 

The variogram matrix ( )hΓ  is the covariance matrix from temporal increments. It 

describes the correlation structure between subsequent time steps 

Ttt ji ,...,1),( =  (Goovaerts, 1992). Supposing no correlation between RV at long 

space distances (the range of spatial continuity is lower than the biggest 

distances of the domain), the variogram matrix converges to a unique 

covariance matrix V: 

 

                                           ( ) ∞→→Γ hVh to                                        (3.5) 
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Here, spatial variograms from the difference between the present water table 

depth and the water table depth at a past time instant were calculated from 

observed water table depths. The time lag considered calculate the water table 

depth to increase/decrease between time steps was one month, covering five 

time instants in a period from May to September, 2004. 

 

3.2.1   Coregionalization analysis 

Analyzing the spatial distribution at different scales is one aspect that 

contributes to a good understanding of the phenomenon. In this work, the term 

scale is used in an intuitive way, without any direct relation with cartographic 

scale. Microscale refers to random errors not captured by the sample grid 

(nugget effect). Mesoscale refers to regional variations, with short range; and 

macroscale refers to global variation, in long range. The spatial phenomenon 

can occur in different ways at different scales. These different scales refer only 

to spatial scale (geographic), and can be modelled by the variance/covariance 

matrix ( )hΓ  which describes the correlation structure from each distance (lag) h 

modelled. 

 

In the scope of the linear coregionalization model (LCM), described at 

Goovaerts (1997), it is supposed that the spatial distribution of the variable is a 

result of different process interactions, independently acting in different spatial 

scales. The variogram matrix can model these scales using nested models with 

S variogram functions. All T(T +1)/2 direct and cross variograms are modelled 

by a linear combination of standard variograms for the same spatial range. 

When ( )hΓ  has spatial dependence in different spatial scales, the matrix ( )hΓ  

can be decomposed in basic variograms functions ( )hsg , where Ss ,...,1=  

represent the number of spatial scales modelled (Castrignanò et al., 2000): 

 

                                           ( ) ( )∑
=

=Γ
S

s

ssgB
1

hh                                                  (3.6) 
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where, [ ]s

tt

s

ji
bB =  is the positive semi-defined coregionalization matrix TT × . 

This matrix presents more precise descriptions of the correlation structure ( )hΓ  

at different spatial scales. The coefficients s

tt ji
b  express the relative importance 

of the basic variogram function ( )hsg  in ( )hΓ . Under second order stationarity 

hypothesis, ( ) 1→hsg  when ∞→h , and the variance/covariance matrix 

V equals to the sum of the coregionalization matrix: 

 

                                                   ∑
=

=
S

s

sB
1

V                                                      (3.7) 

 

When correlations change in function of the spatial scale, coregionalization 

matrixes Bs describe the correlations better than variograms matrixes ( )hΓ  

because measure just the spatial contribution of each variable to the variogram 

function (Goovaerts, 1992). 

 

The use of a LCM lies in considering that each RF ( )utZ  can be decomposed in 

a set of uncorrelated RF ( ){ }SsTvY s

v ,....,1;,...,1, ==u  with transformation 

coefficients s

ta ν
: 

 

                                            ( ) ( )∑∑
= =

=
S

s

T

v

s

v

s

tt YaZ
1 1

uu
ν

                                          (3.8) 

 

where ( )us

vY  are regionalized factors from v components at the spatial scale s . 

To an established s , the T  RF ( )hs

vY  has the same variogram function ( )hsg . 

Clustering the regionalized factors with the same variogram functions ( )hsg , 

each RF ( )utZ  can be written as the sum of orthogonal RF ( )us

tZ : 
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                                              ( ) ( )∑
=

=
S

s

s

tt ZZ
1

uu                                                 (3.9) 

 

Each spatial component ( )us

tZ  represents the behaviour of the RF ( )utZ , which 

means the behaviour of Z  at time t in scale s. Decomposing each ( )utZ  in 

different components ( ),us

tZ  it is possible to study the temporal behaviour of Z  

at different scales, and for a known scale s, the correlation between different 

time steps is measured by the structural correlation coefficient: 

 

                                             
s

tt

s

tt

s

tts

tt

jjii

ji

ji

bb

b
r =                                                  (3.10) 

 

These coefficients measure correlations among variables for each spatial model 

basic structured, showing phenomenon’s behaviours in scales previous defined. 

Many times these behaviours are not detected by methods which do not 

consider the phenomenon as variant in different scales (Goovaerts, 1992).  

 

In this work, we applied principal component analyses (PCA) to decompose the 

matrixes sB  in matrixes sA  (Castrignanò et al., 2000). These procedures 

explore ST relations of the study variable for the time steps analyzed. The 

matrixes sA  are set by the coefficients s

ta ν
, described by equation (3.8).  

 

Linear combinations of the original functions generate orthogonal functions with 

coefficients as the eigenvectors of matrix V. Each principal component explains 

a percentage of the total variance, which corresponds to the ratio between 

principal component eigenvalue and the total variance. The presence of a LCM 

lies in the hypothesis that the process can be explained by independent 

factors ( )us

vY . Eigenvalues calculated from the coregionalization matrix 

correspond to the variable weights at the principal components. The correlation 
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graphic shows in the Y axis the first principal component eigenvalues and in the 

X axis the second principal component eigenvalues, for each variable. These 

variables projections in factorial space are defined for the two firsts principal 

components in the graph, showing the behaviour of the temporal structure of 

the variables in study.  

 

3.2.2   Estimation and uncertainty measure 

The value ( )outZ  is estimated to calculate the aquifer natural discharge volume 

(NDV) and assess the risk of water loss involved by water use during the dry 

season. This volume evaluates the aquifer regulatory water reserves, which 

represents the amount of free water storage in the unsaturated zone with 

natural recharge under effect of seasonal precipitation (Costa, 2000). Two 

scenarios are presented to evaluate risks in water management: the first with a 

conservative water use and the second with an optimistic strategy (Goovaerts, 

1997). 

 

These RV values ( )otZ u  are estimated by cokriging. The aim here is to infer 

values of these variables at unvisited locations ou , using the available 

information at T  time steps of the considered phenomenon. At a given time 

step t’, Tn × , the RF ( )tZ ,u  is estimated as: 

 

                                               ( ) ( )∑∑
= =

=
T

t

n

ttot zZ
1 1

ˆ
α

ααλ uu                                    (3.11) 

 

It is a ST weighted mean, where different weights λαt are attributed in function of 

the ST dependence estimated in the variograms. NDV maps ( )αutV and 

standard deviations for May, June, July, August and September were calculated 

from ( ) Nzt ,...,1,ˆ =ααu  estimations. In this case, the estimator is adapted from 

Costa (2000): 
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                                         ( ) ( ) NZpAV teft ,..,1,ˆ..ˆ == ααα uu                              (3.12) 

 

                                        ( ) ( ) NpA
tZeft ,..,1,ˆ..ˆ == ασσ αα uu                              (3.13) 

 

where A is the pixel area of the inferential regular grid and efp  is the effective 

porosity for each considered soil class, described at Table 3.1 (Lousada, 2005).  

 

Table 3.1 - Estimated effective porosity for the soil types presented over the Jardim 

River watershed. 

 

Soil Type Minimum Maximum 

Red Latosol (LV) 7% 9% 

Red Yellow Latosol (LVA) 7% 12% 

Haplic Cambisol (Cx) 3% 7% 

Quartzarenic Neosol (RQ) 12% 18% 

Haplic Gleysol (Gx) 7% 10% 

Haplic Plinthosol (Px) 4% 8% 

Source: adapted from Lousada (2005) 

 

For each grid cell we calculate a probability density function (PDF). Percentiles 

of the PDF are selected assuming a normal distribution of water table depths 

over the area. We generated scenarios characterizing risks associated with 

these estimations from the percentile values. Percentiles below the mean are 

estimations with high probability to incur in errors of overestimation. Percentiles 

above the mean are estimations with high probability to incur in errors of 

subestimation (Goovaerts, 1997). The critical limits established were the 

percentiles 0.10 and 0.90: 

 

                                ( ) ( )[ ] 90,0ˆProb 1.0 => qt vV αu                                             (3.14) 
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                                ( ) ( )[ ] 10,0ˆProb 9.0 => qt vV αu                                             (3.15) 

 

These limits were considered to be convenient for the main sources of 

uncertainty associated to this modelling, and reasonable for water 

management. The main sources of uncertainty considered were the model of 

spatio-temporal variation of WTD, erros from observations, soil properties and 

soil maps, and interpolation erros. We generated quantitative measures of 

aquifer natural discharge volume from water gain/loss scenarios of the dry 

season. 

 

3.3    Results and discussion 

The descriptive statistitics of the water table depths increase/decrease during 

the dry season are presented in Table 3.2.  

 

Table 3.2 - Descriptive statistics of the Jardim River watershed water table depths 

increase/decrease data from May to September, 2004, in meters. 

 

 

Variable 

 

Mean 

 

SD 

 

Variance 

 

Skewness 

 

Kurtosis 

 

CV 

P- 

value 

Frequency 

Distribution 

May -0,29 0,70 0,48 -0,77 4,46 -2,39 0,032 NN 

June -0,54 0,67 0,45 -1,43 5,26 -1,24 0,000 NN 

July -0,37 0,50 0,25 -2,10 7,49 -1,35 0,000 NN 

Aug. -0,55 0,64 0,41 -1,98 7,00 -1,18 0,000 NN 

Sept. -0,47 0,44 0,19 -1,10 3,33 -0,93 0,000 NN 

Unites: May, June, July, August and September=meters, SD=Standard deviation 

CV=coefficient of variation, P-value=Anderson-Darling test for normality at 5% 

probability; N-normal distribution, NN- not normal distribution. 

 

The frequency distribution of the water table depths increase/decrease has high 

negative skew and kurtosis coefficients. It is a result of extreme values found 
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from the different responses of water table depths over the area which influence 

the frequency distributions. At some places, water table depths had centimetric 

variations. At other sites, the water table depths varied some meters during the 

monitored period. From a visual inspection of the frequency histograms, the 

frequency distribution presented deviates when compared with a normal 

distribution. The Anderson-Darling test (Parkin and Robinson, 1992) with 0.05% 

probability accounts for normality. The results presented non-normal 

distributions for the months under investigation. The distributions started to 

present shapes close to a normal distribution after removing some outliers 

(possibly originated from error measurements). This procedure reduced 

drastically skewness and kurtosis. 

 

The direct and cross covariance structure (equation 3.4) were estimated by the 

LCM (Goulard and Voltz, 1992) presented at equation 3.6. Two structures were 

modelled: first, a nugget effect (B0) or random component of microscale errors, 

and second a Gaussian model which explains the spatial dependence in 

regional scale with a 2,130.95 m common range: 
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where Bs, s=0,1 are the positive semi-defined coregionalization matrixes for the 

nugget effect and Gaussian structure of the model γij(h)=B
0g0(h)+ B1g1(h). The 

coregionalization matrixes give the contribution of each month under study as 

variances and covariances for the modelled coregionalization structured. The 

15 direct and cross adjusted variograms (Figure 3.1) present the modelling. The 

solid lines represent the theoretical model adjusted to the sample variance. 

Direct variograms contributions for each month are in the diagonal of the matrix, 

and out of the diagonal are the contributions of the cross variograms 

(covariances between months). The highest contributions for the model were 

given by May, June and August, which had the highest values for the Gaussian 

structure (mesoscale). August and September had the highest nugget effects, 

being the months which more influence the model random component. The 

temporal correlation is highest at small temporal lags. The correlation is lost in 

time because of the changes in water table patterns during the dry season. The 

structural correlation coefficients are in Table 3.3. 

 

Table 3.3 - Structural correlation coefficient from the dry season at microscale (nugget 

effect) and mesoscale (Gaussian model with 2,130.95m range). 

 

Microscale May June July August September 

May 1.00 - - - - 

June 0.13 1.00 - - - 

July -0.66 -0.75 1.00 - - 

August -0,37 -0.16 0.03 1.00 - 

September -0,45 -0,41 0,22 0.98 1.00 

Mesoscale May June July August September 

May 1.00 - - - - 

June 0.82 1.00 - - - 

July 0,56 0.64 1.00 - - 

August 0.53 0.57 0.70 1.00 - 

September 0.80 0.76 0.79 0.8 1.00 
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Figure 3.1 - Direct and cross experimental (dash line) and theoretical (solid line) variograms adjusted for the dry season of 2004 in 

the Jardim River watershed. 
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The scenario for September (end of dry season) is very different from May 

(beginning of the season), not only in water table depths but also in water 

availability. It can be checked at Figure 3.2, which presents the 

increase/decrease of water table depths estimated by cokriging. Some areas 

present systematic decreases in water table depths, verified over the months. 

 

 

 

Figure 3.2 - Increase/decrease of water table depths (meters) at Jardim River 

watershed estimated by cokriging for May, June, July, August and September, 2004. 

 

Principal components analyzes applied on Bs, s=0,1, converged the matrix V to 

∑
=

S

s

sB
0

. The first two principal components resume 87.96% of nugget effect 

variation at microscale. The first two principal components resume 92.33% of 
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the Gaussian model variation at mesoscale. Analyzing both scales together, the 

nugget effect corresponds to 19.66% and the Gaussian model to 80.34% of the 

LCM variation. 

 

The correlation graph (Figure 3.3) shows the temporal relation among the 

variables. For nugget effect, August and September form a cluster because 

have high contribution in the model, as well the May, June and July that had 

lower contribution to this part of the model. At regional scale May and June form 

a cluster because of its high contribution to the model, as well July, August and 

September (low model contribution).  

 

 

 

Figure 3.3 - Projection in the space defined by the two first principal components 

showing the modelled structures (nugget effect and Gaussian model) for the dry 

season in the Jardim River watershed. 

 

At August and September water table depths start to evidence the dry season 

effects. The water table depths are still under the effect of the rains of March 

and April at May, June and July because of the long memories of the 

hydrological system. These results ratified the temporal correlation described by 

the structural correlation coefficients of each modelled scale before the 

decomposition of the coregionalization matrix in independent factors (Table 
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3.3), and by the spatial patterns at the cokriging maps (Figure 3.2). The 

correlation is strong at small time lags and is lost in the elapsed dry season. 

 

The cokriging maps were sumed in order to obtain the total increase/decrease 

of water table depths at Jardim River watershed during 2004 dry season. Table 

3.4 presents the values of NDV for the whole area during the monitored period.  

 

Table 3.4 - Natural discharge volume of the Jardim River watershed aquifer during the 

dry season of 2004. 

 

 Total (m3) 

Hectare 

(m3 ha-1) 

Day 

(m3 ha-1 dia-1) 

Dia 

(L m-2 dia-1) 

Mean volume (X) -22963100 -2069,07 -13,52 -1,35 

Percentile 0.1 -51541600 -4643,97 -30,35 -3,03 

Percentile 0.9 5603300 504,87 3,29 0,33 

 

Neosols class had high decreases of water table depths. The sandy soil texture 

and consequently large amount of macropores in these areas result in a fast 

water movement and infiltration, less water storage by capillarity and fast 

dryness during long dry periods (Resende et al., 2002).  

 

Red Yellow Latosols presented larger decreases than Red Latosols because of 

the texture not so clay. The water is storage by soil capillary and pores retention 

inside porous and fractured rocks. Part of this water infiltrates by saturation, 

staying in the soil and inside the rocks, and the other part is lost by evaporation 

and evapotranspiration (Lousada, 2005). However, Red Latosol areas 

presented both decreases and increases of water volume. This variability came 

from structural differences from Latosol mineralogy (Reatto et al., 2000) and 

land uses that this areas have being submitted over the past years (Dolabella, 

1996). Water flow and water retention on soil are dependable on soil depth, 

texture, structure, porosity and pedoform (Resende et al., 2002). All these 
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variables are essential to predict soil water retention in different soil classes and 

can interact in several ways. Identification and evaluation of these attributes 

subsidize the prediction of possible impact in the soil-plant-atmosphere system.  

 

Haplic Cambisols presented low water table depths decrease. In general, Haplic 

Plinthosols presented increase, and Haplic Gleysols presented decrease in 

water table depths. These areas in which the water table depths continue 

increasing during the dry season are concentrated close to the river springs. 

 

The scenarios created from the selected percentile values calculated from the 

PDF’s are interesting for water management because from these estimations 

account for subestimation and overestimation errors (Goovaerts, 1997). These 

errors produce different consequences in water management. The variation 

among the percentiles 0.1 and 0.9 were 124% when compared with the mean 

estimated scenario (Figure 3.4). 

 

 

 

Figure 3.4 - Estimated scenarios accounting for risk of Natural Discharge Volume 

(NDV) at the dry season of 2004 in the Jardim River watershed (m3 ha-1). 
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Percentile 0.1 is a subestimated map when compared with the mean NDV. 

These values are sensitive to overestimations, creating a pessimistic scenario 

where the water loss in the dry season is considered maximum. These map 

values have 90% probability to be higher than the presented and just 10% 

probability to be lower. This map is indicative for areas where the water table 

depths decreases are not so big and where the water loss is low. 

 

In the same way, the map of percentile 0.9 is overestimated. These values are 

sensitive to subestimation, creating an optimistic scenario where the water loss 

in the dry season is considered minimum. The values of this map have just 10% 

probability to be higher than the presented and 90% probability to be lower. 

Areas with deceases in water table depths have high probability to loose water 

volume. Areas with higher water loss (areas with low values in the map) are 

areas with higher water table depths variation. This map indicates areas in 

which the water table depths are bigger and important regions for local drainage 

and system recharge. These areas are more sensitive to long dryness periods. 

 

Areas with decreases in water table depths have high probability to loose water 

volume. Optimistic evaluations at areas with big variations of water table depths 

can incur in agricultural production crashes and errors choosing areas to install 

irrigation systems. Considering uncertainty contributes to preserve important 

areas for aquifer recharge. It allows for realistic impact evaluations of new 

agricultural system implementation which needs high water demand. 

 

3.4    Conclusions 

The methodology allows to create uncertainty maps about aquifer NDV 

considering the ST dependence between water table depths observations. 

 

Percentiles maps 0.10, 0.50 and 0.90 generated from the same ST correlation 

structure presenting big differences in the NDV. 
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Percentile map 0.10 indicated favourable areas for water use, where water table 

depths varied less; and percentiles map 0.90 indicated areas with big water 

table depths oscillations, which contribute more to the local drainage and 

aquifer recharge. 
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4 MONITORING SYSTEMATIC CHANGES IN WATER TABLE DEPTHS IN A 

BRAZILIAN CERRADO AREA† 

4.1    Introduction 

The rapid expansion of modern agriculture and the establishment of large-scale 

ranches have affected the characteristic landscape and ecosystem of Cerrado 

during the past 40 years. A complex wood/grass ecosystem was substituted by 

shallow-rooted monocultures, which are less well adapted to drought. Cerrado 

agriculture is profitable, and agricultural expansion is expected to continue 

needing improvements in techniques and infrastructure. Their need of water 

supply by irrigation techniques is likely to change the hydrological system (Klink 

& Moreira, 2002). With irrigation increasing, lowering of water table can occur, 

and so risks of water supply appear.  

 

The Jardim River watershed is one of the most important regions which supply 

the Brazilian Federal District with agricultural products. Dolabella (1996) already 

predicted that the actual water need from irrigated areas in the Jardim River 

watershed is not guarantied in the future. An over exploration of the water 

resources in this area is reported and a decrease in the areas irrigated with 

central pivots suggested, even been considered not too much probable by 

economic interests. The author also made an alert about the small viability of 

building barrages as water reservoirs along the river course. Gomes-Loebman 

et al. (2005) analyzed the increasing of irrigated areas in the Jardim River 

watershed during a period from 1984 until 2002. They used a time series of 

Landsat images, classified by their spectral mixture. The agricultural crops 
                                                 
† A previous version of this chapter was presented in the 7th International Symposium on Spatial 
Accuracy Assessment in Natural Resources and Environmental Sciences and published in the 
proceedings as “Mapping trends in water table depths in a Brazilian Cerrado area”, Manzione, 
R. L., Knotters, M., Heuvelink, G. B. M. p.449-458. 2006. ISBN: 972-8867-27-I 
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represented 61% of the basin in 1984 and irrigation techniques were not 

applied. In 2002, their represented 73% of the area and 18% use irrigation 

techniques in their cultivations (most central pivots). 

 

To optimize and balance the interest of economical and ecological land use 

purposes, knowledge about the spatio-temporal dynamics of the water table is 

important (Von Asmuth and Knotters, 2004). In hydrology, water table dynamics 

are modelled in several ways. In the field of time series analysis, transfer 

function-noise (TFN) models have been applied to describe the dynamic 

relationship between precipitation and the water table depths (Box and Jenkins, 

1976; Hipel and McLeod, 1994; Tankersley and Graham, 1994; Van Geer and 

Zuur, 1997). Basically, these methods are multiple regression models where the 

system is seen as a black box that transforms series of observations on the 

input (the explanatory variable) into a series of the output variable (the response 

variable). In our case, water table depth.  

 

The parameters of time series models can be regionalized using ancillary 

information related to the physical basis of these models (Knotters and 

Bierkens, 2000, 2001). This approach can be used to describe the spatio-

temporal variation in the water table depths. We assume that spatial differences 

in water table dynamics are determined by the spatial variation in the system 

properties, while its temporal variation is driven by the dynamics of the input into 

the system.  

 

An important application of time series analysis is estimating the effects of 

hydrological interventions. As examples of interventions we can name the 

clearing or transformation of forests, rise retained surface water levels, 

operation of pumping wells, construction of barrages or ditches, and so on. 

When such interventions occur over a certain period of time, we can analyze it 

by trend analysis. Studying the possible effects of a natural event or a human 

interventions on the object is the aim of trend monitoring (De Gruijter et al., 
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2006), not only to find out whether there has been a change, but also to find out 

whether the change was caused by a specific event or measure, supporting 

decision-making to reduce societal and agricultural vulnerability to periods of 

water shortages. Linear trends can reveal if the water levels are descending or 

increasing, without precisely knowing if the groundwater level is changing and 

why. To link the response characteristics of the water table system to the 

dynamic behaviour of the input, Von Asmuth et al. (2002) presented a method 

based on the use of a specific TFN model, the Predefined Impulse Response 

Function In Continuous Time (PIRFICT) model.  

 

The aim of this study was to map and monitor systematic changes in water 

table depths in a watershed located at the Brazilian Cerrados. We verified linear 

trends in water table depths and suggest areas with potential risks of future 

water availability.  

 

4.2    Materials and methods 

4.2.1   Time series modelling 

The behaviour of linear input-output systems can be completely characterized 

by their impulse response (IR) function (Ziemer et al., 1998; Von Asmuth et al., 

2002). For water table depths, the dynamic relationship between precipitation 

and water table depth can also be described using physical mechanistic 

groundwater flow models. However, much less complex TFN models 

predictions of the water table depth can be obtained which are often as 

accurate as those obtained by physical mechanistic modeling (Knotters, 2001). 

In TFN models one or more deterministic transfer components and a noise 

component are distinguished. These components are additive. A transfer 

component describes the part of the water table depth that can be explained 

from an input by a linear transformation of a time series of this input. The noise 

model describes the autoregressive structure of the differences between the 

observed water table depths and the sum of the transfer components. The input 
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of the noise model is a series of independent and identically distributed 

disturbances with zero mean, and finite and constant variance, that is the white 

noise. Figure 4.1 shows a scheme of the TFN model for water table depths. 

 

 

 

Figure 4.1 - Schematic representation of the transfer function model with added noise 

for water table depths. 

 

4.2.2   The PIRFICT-model 

The PIRFICT-model, introduced by Von Asmuth et al. (2002), is an alternative 

to discrete-time TFN models. In the PIRFICT-model a block pulse of the input is 

transformed into an output series by a continuous-time transfer function. The 

coefficients of this function do not depend on the observation frequency. The 

following single input continuous TFN model can be used to model the 

relationship between water table dynamics and precipitation surplus.  
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4.2.2.1   Estimation of response characteristics of groundwater systems 

Under the assumption of linearity, a time series of water table depths is a 

transformation of a time series of precipitation surplus. The transformation of 

precipitation surplus series into a series of water table depths is completely 

governed by the IR function. For the simple case of a linear, undisturbed 

phreatic system that is influenced by precipitation surplus only, the following 

single input continuous TFN model, written as a convolution integral, can be 

used to model the relationship between water table dynamics and precipitation 

surplus (Von Asmuth et al., 2002): 

 

                                         )()()( * trdthth ++=                                               (4.1) 

 

                                       ∫ ∞−
∂−=

t

tpth ττθτ )()()(*                                             (4.2) 

 

                                        ∫ ∞−
∂−=

t

Wttr )()()( ττφ                                              (4.3) 

 

where: 

h(t) is the observed water table depth at time t [T]; 

h*(t) is the predicted water table depth at time t credited to the precipitation 

surplus, relative to d [L]; 

d is the level of h*(t) without precipitation, or in other words the local drainage 

level, relative to ground surface [L]; 

r(t) is the residuals series [L]; 

p(t) is the precipitation surplus intensity at time t [L/T]; 

θ(t) is the transfer Impulse Response (IR) function [-]; 

)(tφ is the noise IR function [-]; 

W(t) is a continuous white noise (Wiener) process [L], with properties 

E{dW(t)}=0, E[{dW(t)}2]=dt, E[dW(t1)dW(t2)]=0, t1 ≠ t2. 
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The local drainage level d is obtained from the data as follows: 
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with N the number of water table depth observations.  

 

TFN models are identified by choosing mathematical functions which describe 

the impulse response and the autoregressive structure of the noise. This 

identification can be done in two ways: 

 

a) Iteratively: using correlation structures in the available data and model 

diagnostics. 

b) Physically: based on insight into the behaviour of the analyzed system. 

 

Here, the second approach is followed. The IR function describes the way in 

each the water table responds to an impulse of precipitation. In that respect it is 

similar to the instantaneous unit hydrograph used in surface water hydrology 

(Von Asmuth & Maas, 2001). A typical IR function looks like a very skew 

probability distribution function. The form and area of the impulse response 

function depends strongly on the hydrological circumstances in situ. Where, for 

instance, the flow resistance to the nearest drainages is low, the water table will 

drop quickly after a shower and consequently the area of the IR function will be 

small. θ(t) is a Pearson type III distribution function (PIII df, Abramowitz & 

Stegun, 1964). The option for this function is because of its flexible nature that 

can adequately model the response of a broad range of groundwater systems. 

Assuming linearity, the deterministic part of the water table dynamics is 
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completely determined by the IR function moments. In this case, based on Von 

Asmuth et al. (2002), the parameters can be defined as: 
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where A, a, n, are the parameters of the adjusted curve, Γ(n) is the Gamma 

function and α controls the decay rate of )(tφ  and 2
rσ is the variance of the 

residuals.  

 

The PIII df can take shapes gradually ranging from steeper than exponential, 

via exponential to Gaussian (Figure 4.2). Equation 4.5 and its parameters have 

a physical meaning that is described in Von Asmuth & Knotters (2004). The 

physical basis of the PIII df lies in the fact that it describes the transfer function 

of a series of linear reservoirs (Nash, 1958). For the purpose of general 

catchment responses modelling, idealization of the catchment as a linear 

storage reservoir is the most elementary of the various levels of 

conceptualization that are involved (Bodo & Unny, 1987).  

 

The parameter n shows the number of linear reservoirs and a equals the 

inverse of the reservoir coefficient normally used. As Knotters & Bierkens 

(2000) explain, a single linear reservoir (a PIII df with n=1) equals a simple 

physical model of a one-dimensional soil column, discarding lateral flow and the 

functioning of the unsaturated zone. The extra parameter A is necessary 

because in equation 4.5, where a precipitation and evapotranspiration series 

are transformed into a water table depths series, the law of conservation of 

mass does not apply. The extra parameter adjusts the area of the PIII df to 

describe the response of the water table to precipitation surplus. 
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Figure 4.2 - Example of the range of shapes that Pearson type III df can take with (n= 

[0.5, 1, 1.3, 1.7, 2.3], A=n×100, a=0.01).  

 

The PIII df has shown to be able to model fluctuations of water table closely and 

comparably to Box-Jenkins TFN models with many more parameters (Von 

Asmuth et al., 2002). The parameter A is related to the local drainage 

resistance (the area of the IR function equals the ratio of the mean height of the 

water table to the mean water table recharge). Aa is determined by the storage 

coefficient of the soil and n as the convection and dispersion time of the 

precipitation through the unsaturated zone. However, care should be taken 

when interpreting the parameters of the PIII df, or any other time series model 

for that matter, in physical sense, because of their lumped and empirical nature 

(Von Asmuth & Knotters, 2004). 
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4.2.2.2   Model evaluation, parameter estimation and diagnostic checking 

of PIRFICT- model 

After selecting an IR function that represents the underlying physical process, 

the available time series have to be transformed to continuous series. First, in 

order to characterise the variability of precipitation and evaporation, we rely on 

a simple but effective method to estimate the average precipitation surplus 

intensity and its annual amplitude. When precipitation surplus data is only 

available at discrete intervals, the continuous series p(τ) cannot be 

reconstructed exactly, but it can be approximated by assuming that the 

distribution of p(τ) is uniform during the period tpb to tpe (Ziemer et al., 1998). 

The average level p of the precipitation surplus is obtained as: 
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with tpb and tpe denoting the start and end of the period over which the 

meteorological characteristics are calculated. Next, time is split into year Y and 

the Julian day D, and the precipitation surplus is averaged over Y, which 

effectively filters out its yearly course p~ : 
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Because the temperature largely determines the annual evaporation cycle and 

is more or less harmonic, so is the precipitation surplus and the annual 

amplitude can be obtained by matching a sine to the yearly course (Von Asmuth 

& Knotters, 2004). 
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Using equation 4.6, the transfer model (equation 4.2) can be evaluated using a 

block response (BR) function Θ(t). The BR function can be obtained convoluting 

the IR function with a block pulse of precipitation surplus with unit intensity over 

a period ∆t, as follow: 
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Because Θ(t) is a continuous function, h*(t) itself is also continuous, and for 

every observation of h(t) a sample of the residual series r(t) can be obtained. 

Next, the noise model (equation 4.3) is evaluated in order to obtain a series of 

innovations ν(t). The noise model weights the individual elements of the noise 

series according to their variance, which are the innovations. The variance of 

the innovations is a function of the time step (Von Asmuth & Bierkens, 2005). 

To evaluate the noise model we will derive a direct relation between the 

residuals r(t) and the innovations ν(t). Consider the series ν(t) as the 

nonequidistantly sampled change in the solution to the stochastic integral 

describing the residual series: 
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with )(tφ from equation 4.5 as the noise IR function, we can rewrite equation 4.3 

as: 
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which is know as an Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 

1930; Gardiner, 2004).  
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The use of a simple Ornstein-Uhlenbeck–based (OUB) noise model provides an 

elegant solution for modelling irregularly spaced observations and data with 

mixed frequencies (Von Asmuth & Bierkens, 2005). The OUB model is 

equivalent to an autoregressive model with order 1 (AR(1) model), which is 

often used to model the residuals in hydrological applications. In a comparison 

of the AR(1) model, conventional or embedded in a Kalman filter, and the OUB 

noise model, Von Asmuth & Bierkens (2005) showed that their equations are 

mathematically equivalent, yielding almost the same estimates. The continuous 

equations of OUB noise model, however, are more general, give an exact 

solution and are computationally more efficient as they are not evaluated 

recursively. Also, Von Asmuth et al. (2002) argue that the Kalman filter 

approach does not offer a satisfactory solution for time series of slow systems 

with a nonexponential response because when it is applied to a large extent this 

problem is alleviated for simple exponential systems. A restriction of the OUB 

model in its present form is that it is limited to processes that show exponential 

decay (Von Asmuth & Bierkens, 2005). Combining equations 4.9 and 4.10, we 

obtain the innovation series calculated from the available data: 

 

                                            )(e)()( ttrtrt t ∆−−= ∆−αν                                    (4.11) 

 

Subsequently, an estimative of model parameters set β=(A, a, n, α) is made 

with the aid of a Levenberg-Marquardt algorithm, which numerically minimizes a 

weighted least squares criterion based on the likelihood function of the noise 

model. Finally the accuracy and validity of the model are checked using the 

auto and cross-correlation functions of the innovations, the covariance matrix of 

the model parameters and the variance of the IR functions. For a complete 

overview of the PIRFICT-model formulation, applications and study cases we 

refer to Von Asmuth & Maas (2001), Von Asmuth et al. (2002), Von Asmuth & 

Knotters (2004) and Von Asmuth & Bierkens (2005). 
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4.2.2.3   Advantages of the PIRFICT-model 

Time series of the groundwater level are often collected manually, tend to be 

nonequidistant and containing missing data (Von Asmuth et al., 2002). As 

verified above, the PIRFICT-model can be calibrated on data at any frequency 

available because it operates in a continuous time domain and the time steps of 

the output variable are not coupled to the time steps of the input variables. 

Compared to the combined AR model and Kalman filter, the PIRFICT-model 

offers a further extension of the possibilities of calibrating TFN models on 

irregularly spaced time series, because the shape of the transfer function is not 

restricted to an exponential (Von Asmuth & Bierkens, 2005).  

 

In the continuous case, the model order is defined by choosing continuous 

mathematical functions to represent the IR functions. The mathematical 

functions are selected on physical grounds, by an iterative procedure of model 

identification, estimation and diagnostic checking, or with the use of automatic 

model selection criteria. However, Von Asmuth et al. (2002) presented several 

important differences from the discrete model identification procedure. First of 

all, when chosen carefully, a continuous IR function can have a flexible shape 

and be equivalent to a series of autoregressive/moving average (ARMA) 

transfer functions. Secondly, the model identification procedure is simplified, 

because the model frequency does not interfere with the model order and 

parameter values, and the flexibility of a single continuous IR function can be 

such that it comprises a range of ARMA transfer functions. Thirdly, the model 

can be readily identified using physical insight. A continuous IR function can be 

objectively chosen as the function that best represents the physics of the 

analyzed system. A physically based IR function on the one hand reduces the 

sensitivity of the model to coincidental correlations in the data, but on the other 

hand it can reduce the fit if for some reason the physical assumptions prove to 

be incorrect (Von Asmuth et al., 2002).  
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4.2.2.4   Summary of the method 

In summary, the method described consists of the following steps: 

 

a) For every input series an IR function is chosen; 

b) The input series are assumed to be uniformly distributed in between 

the time steps and transformed into continuous series using equation 

4.6;  

c) The transfer convolution integral (equation 4.2) is evaluated using 

impulse response functions for every block pulse, to obtain a 

continuous prediction of the output series;  

d) A sample of the innovation series is obtained (equation 4.11) for every 

observation of the output series;  

e) Model parameters are estimated with the aid of a Levenberg-

Marquardt algorithm; 

f) Accuracy and validity of the model are checked using the auto and 

cross-correlation functions of the innovations, the covariance matrix of 

the model parameters and the variance of the IR functions. 

 

The PIRFICT-model was applied in this study because the model can describe 

a wide range of response times with differences in sampling frequency between 

input series and output series. Being the most important driving forces of water 

table fluctuation, precipitation and evapotranspiration are incorporated as 

exogenous variables into the model. Besides precipitation and 

evapotranspiration, a linear trend component is incorporated to verify 

systematic changes in the water system. The response of this new impulse in 

the PIRFICT-model is itself an impulse. That is, the input series is not distorted 
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by the model, but is, apart from a scaling factor, directly added to the simulated 

groundwater level itself (Von Asmuth et al., 2002). 

  

4.2.3   Regionalizing the linear trend parameter of the time series model 

From the original 40 wells, the PIRFICT-models were calibrated to 37 series of 

water table depths, using the program Menyanthes. Three wells were 

considered outliers and removed from the further analyses. Next, the trend 

parameters reflecting systematic changes of water table depths were mapped. 

The trend parameter of the PIRFICT-model was interpolated spatially using 

Universal Kriging (Matheron, 1969; Pebesma, 2004). This works as follows. Let 

the ‘observed’ trend parameters be meant as z(x1), z(x2), T, z(xn), where xi is a 

(two-dimensional) well location and n is the number of observations (i.e., n=37). 

At a new, unvisited location x0 in the area, z(x0) is predicted by summing the 

predicted drift and the interpolated residual (Odeh et al., 1994; Hengl et al., 

2004): 
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where the drift m is fitted by linear regression analysis, and the residuals e are 

interpolated using kriging:  
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Here, the βk are estimated drift model coefficients, qk(x0) is the kth external 

explanatory variable (predictor) at location x0, p is the number of predictors, 

wi(x0) are the kriging weights and e(xi) are the zero-mean regression residuals. 
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Ancillary information related to the actual land sources was derived from 

Landsat 5 images. Three images from July 23, 2005, July 26, 2006 and January 

18, 2007, orbit/point 221/71, were inspected and used to classify the actual land 

use in the region. The image classification results in a land use surface, divided 

in three classes: Agricultural Crops, Pasture and Cerrado. This classification is 

based on expert knowledge and a manual outline of the classes. The class 

Agricultural Crops includes all kinds of agricultural products that are cultivated in 

the area: small areas cultivated with horticultural products, such as carrots, 

lettuce and tomatoes, and big areas cultivated with products such as corn, 

soybeans, cotton, coffee and sugarcane. All these crops demand more water 

than the original vegetation. The agricultural practices are intensive, resulting in 

three production cycles during one year when irrigation is applied. Also, the land 

use in the class Agricultural Crops is very dynamic as a result of agronomical 

recommendations, rotation schemes or simply prices. The class Pasture is 

considered to be less water demanding than Agricultural Crops, but more 

demanding than the natural Cerrado vegetation. These areas are not as 

dynamic in land use changes as the Agricultural Crops. The classification of 

both images result in the same grid of ancillary information because the land 

use did not change in the region during the monitoring period. 

 

The general universal kriging technique was used to interpolate the linear trend 

parameter (LTP) of the PIRFICT-model. The classified Land Use (LU) map was 

used as predictor. The model was formulated as follows: 

 

             )()(3)(2)(1)( 003020100 xexLUxLUxLUxLTP +⋅+⋅+⋅+= ββββ       (5.14) 

 

where LU1 is land use class 1 (Agricultural Crops), LU2 is land use class 2 

(Pasture), LU3 is land use class 3 (Cerrado Vegetation) and e is a zero-mean 

spatially correlated residual. Its spatial correlation structure is characterized by 

a variogram. The land use map has sharp boundaries. For hydrological studies, 

this does not make sense because water levels do not have abrupt variations 
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related with land use. Therefore, the land use map was smoothed by computing 

the average presence of land use within a window with 500m radius. The choice 

of radius was based on expert knowledge and chosen after several tests.  

 

4.3    Results 

4.3.1   Time series modelling 

Due to spatially varying hydrological conditions, a wide range of calibration 

results was found for the 37 observed wells. The accuracy and validity of the 

model were checked using the auto;correlation and cross-correlation functions 

of the innovations, the covariance matrix of the model parameters and the 

variance of the IR functions. Table 4.1 summarizes the results of time series 

modelling. 

 

Table 4.1 - Summary of the statistics of PIRFICT-model calibrations. 

 

 Min 1st Q Med 3rd Q Max Mean SD 

R2adj 69.27 75.45 79.94 85.11 94.06 80.03 6.56 

RMSE 0.13 0.32 0.66 0.90 1.37 0.65 0.35 

RMSI 0.13 0.26 0.50 0.73 1.27 0.52 0.29 

R2adj= Percentage of explained variance; RMSE=Root Mean Squared Error (meters); 

RMSI=Root Mean Squared Innovation (meters); Min=minimum; 1st Q=first quartile; 

Med=median; 3rd Q=third quartile; Max=maximum; SD= standard deviation 

 

The percentage of variance accounted for each model indicated a good fit of the 

PIRFICT-model to the data. Low percentages might be caused by errors in the 

data or lack of data, or possibly other inputs that affect the groundwater 

dynamics are not incorporated into the model (Von Asmuth et al., 2002).  
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The RMSE is the average error of the transfer model (Root Mean Squared 

Error). An individual check at each well denoted small errors, considered 

reasonable for the target variable (water table depths).  

 

The RMSI is the average innovation or error of the combined transfer and noise 

model (Root Mean Squared Innovation). Observations that are taken soon after 

each other are not independent, but contain almost the same information about 

the state of the system. Increasing sampling time frequency, the variance 

between observations increases and the noise model gives higher weights to 

the individual elements of the innovations series. The autocorrelation function of 

the innovations did not reveal seasonal patterns in the autocorrelation. The 

autocorrelation functions were rather smooth and the accompanying confidence 

interval narrow. It indicates that the white noise assumption holds. The noise 

model was effective to remove the autocorrelation in the time series (Von 

Asmuth et al., 2002). 

 

As an example of the varying hydrological conditions, we selected four wells 

distributed over different soil types, hydrogeological systems and land uses. As 

can be seeing in Figure 4.3, the water table depths respond different from the 

same inputs.  

 

 

 

Figure 4.3 - Examples of PIRFICT-model calibrations on WTD time series at four well 

over the area. 
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Well 30 (W30) locates in the western part of the basin, under fractured 

hydrogeological subsystem F, porous hydrogeological system P2, Red Latosol 

and pasture (Figures 2.1, 2.2, 2.3 and 2.4). Well 40 (W40) locates in the central 

part of the basin, under fractured hydrogeological subsystem Bambuí, porous 

hydrogeological system P2, Cambisol and pasture. Well 56 (W56) locates in the 

extreme northern part of the basin, under fractured hydrogeological subsystem 

R3/Q3, porous hydrogeological system P1, Red Latosol and agriculture. Finally, 

Well 57 (W57) locates in the northern part of the basin, under fractured 

hydrogeological subsystem R3/Q3, porous hydrogeological system P4, Red 

Yellow Latosol and Cerrado vegetation. 

 

The water table depths variations have a relatively large amplitude for W30 and 

W40. This can be explained from the hydrogeological subsystem P2 which 

consists of deep soils. W30 varies deeper because is located under more 

developed soil types. The soils where W56 and W57 are located present larger 

water retention capacity due to its mineralogy. The water flux is intense in the 

north part of the basin, but the subsystem R4 located below this region presents 

slow water movement. It makes that the water table depths vary less in these 

wells, even with the well developed and sandy Latosols that are present there. 

At W57, the levels are more superficial due to the rocky nature of the local 

geology. These wells are examples of how different the water table depths react 

in a small catchment like the Jardim river watershed. The flexibility of Pearson 

III df makes it possible to adjust the PIRFICT-model closely to these different 

responses. 

 

A continuing monitoring strategy is essential for a good time series model 

calibration. The calibrations here, for a period of 1240 days finishing at March 

03, 2007, are more accurate when comparing with the calibration results found 

at Manzione et al. (2006) and Manzione et al. (2007b). The monitoring period in 

Manzione et al. (2006) covered 908 days, finishing at April 05, 2005. In 

Manzione et al. (2007b), the monitoring period covered 1092 days, finishing at 
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October 06, 2006. In all situations, the monitoring period starts at October 11, 

2003. When the relationship between inputs and output in a TFN model is not 

totally representing the underlying processes, adjust must be made in the 

sampling frequency or in the length of the time series. For the long memories of 

the aquifer system verified in the Cerrados, the semi-monthly sampling 

frequency here is enough to cover the response time of the system. In the case 

of length of the monitoring period, when it is not fully covering the correlation 

length, the monitoring should be continued at least until the correlation length or 

response time is completely covered (De Gruijter et al., 2006). Manzione et al. 

(2006) verified that the lengths of time series of the water table depth are too 

short to obtain reliable results for all sites when it covers only 908 days. 

Therefore it is recommended to continue monitoring in order to obtain more 

accurate estimates of the trends in future. Here it is verified in a monitoring 

period almost one year longer. Our baseline for such assumption is the results 

of the R2adj, which are getting better when long time series are analyzed. The 

values of RMSE and RMSI are subjective and not used for compare model 

calibrations because these values refers to specific fluctuations of water table 

depths during the monitoring periods. 

 

4.3.2  Physical interpretation of the PIRFICT-model 

The physical plausibility of the results of a TFN model can be judged, for 

instance, by checking the IR functions, which are equivalent to the cross-

correlation function. We check if the memory of the hydrological system, 

indicated by the time lag where the IR function approximates to zero, is covered 

by the monitoring period (De Gruijter et al., 2006).  Manzione et al. (2006) and 

Manzione et al. (2007b) found problems with the calibration of the PIRFICT-

model for periods of 908 and 1092 days respectively, checking the impulse 

response function for each well. For both cases, the IR functions did not cover 

the monitoring period at some locations. The relative short time series were not 

long enough to characterize the long memories of the hydrological system. 
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These problems were solved after monitoring WTD for 1240 days. The 

parameters of PIRFICT-model are summarized on Table 4.2. 

 

Table 4.2 - Summary of calibrated parameters of the PIRFICT-model. 

 

  Min 1st Q Med 3rd Q Max Mean SD 

IR 71 348 442 719 1362 557.24 319.84 

A 146.8 552.5 687.8 1101.0 1782.0 860.61 433.72 

a 0.0035 0.0102 0.0138 0.0170 0.0449 0.0145 0.0075 

n 1.06 1.35 1.75 1.93 3.85 1.78 0.57 

E -2.09 -0.30 0.43 1.42 2.12 0.38 1.18 

LTP -1.83 0.53 1.14 2.19 5.83 1.29 1.52 

α 14.48 28.13 37.22 65.19 121.01 49.48 29.37 

LDB -24.24 -13.21 -8.66 -5.31 -0.39 -9.99 5.94 

A=drainage resistance (days); a=decay rate (1/days); n=convection time (days); 

E=evaporation reduction factor (-); LTP=Linear trend parameter (meters); α=decay or 

memory of the white noise process (-); IR=Impulse Response (days); LDB=Local 

Drainage Base (meters); Min=minimum; 1st Q=first quartile; Med=median; 3rd Q=third 

quartile; Max=maximum; SD= standard deviation 

 

Parameters A, a and n are calculated and regard the shape of the IR function 

from the pulse of precipitation as input. We found large values of A at sites 

where water table depths varies over a larger range. Following Von Asmuth & 

Knotters (2004), if the A parameter is related with the drainage resistance, “a” 

parameter related with storage coefficient (or porosity) and n parameters related 

with the number of linear reservoirs, they are measures of the memory of the 

system. In other words, the water table will respond slowly in sites where the 

values of A and n are high and a has low values, and the other way round. 

Comparing with Manzione et al. (2006) and Manzione et al. (2007b), 

parameters set (A, a, n) are much better calibrated, as we update the time 

series with new data. Continuing monitoring collaborated for more reliable 
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results about the relationship between WTD and precipitation surplus in the 

Cerrados. Figure 4.4 gives the IR functions for precipitation impulse for the 

wells 30, 40, 56 and 57. The functions have higher response factors for wells 

with large water table depths amplitudes (W30 and W40). 

 

Parameter E is part of the IR function of evapotranspiration. The response to 

evaporation can be considered the same as the response to precipitation, apart 

from a variable evaporation reduction factor. This value should be between 0 

and 1. For some wells we found estimates of E which are not realistic. Also, the 

SD values are high. One reason could be that the climate station, located 

around 10 km outside the study area, does not represent the meteorological 

circumstances at all wells locations. Another reason might be in the large 

temporal variation of land use, which makes these parameters difficult to 

estimate.  

 

 

 

Figure 4.4 - Adjust of the IR functions for the input series of precipitation. 

 

Parameter α from the noise model was well calibrated and statistically 

significant for all wells, confirming the assumption of exponential decay of the 

noise model. Wells which had longer IR functions also had bigger values of α. 

LDB is the local drainage base, or more correctly the level of the groundwater 

level without precipitation or other influence. The values were well calibrated, 

being under the fluctuation range of WTD variation for all wells. 
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4.3.3   Mapping trends in water table depths 

4.3.3.1   Spatial modelling 

Including the land use variables into the geostatistical model caused a decrease 

in the variance, as can be seen in Figure 4.5. The spatial dependence at small 

distances is poorly estimated because of the small number of observation wells 

that are fairly uniformly spread across the area. The nugget parameter of the 

variogram reflects the precision of the LTP and the short-distance spatial 

variation in LTP. 

 

 

 

Figure 4.5 - Variograms fitted for the linear trend parameter without including a trend 

that depends on land use (left) and with including a trend (right). 

 

4.3.3.2   Spatial interpolation 

The interpolation results of the LTP of the PIRFICT-model using universal 

kriging and Land Use classification as a drift are in Figure 4.6. Positive values in 

the interpolated map of systematic changes in water table depth indicate a rise 

of the water table during the last three years, and negative values lowering. The 

map shows a large area near the river where systematic lowering occurs. These 

areas are covered with traditional agricultural crops, using irrigation systems 

that catch water directly from the river (surface water). 
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Figure 4.6 - Estimated LTP of the PIRFICT-model (meters) during the period from 

October 2003 to March 2007 (Left) and the corresponding kriging standard deviations 

(Right). 

 

For some areas systematic risings of the water table depths were estimated. 

These risings can be explained as follows. After three consecutive dry years 

(2001, 2002 and 2003) with less rainfall than the annual average over the last 

33 years, the Jardim river area had two consecutive wet years (2004 and 2005), 

with more rainfall than the annual average. The years 2001, 2002 and 2003 

were very dry with 24.4, 41.02 and 33.2% less rainfall than the annual average 

over the last 31 years, respectively. During 2004 and 2005, rainfall was 8.54 

and 4.6% larger than the annual average of the last 33 years, respectively. 

 

In the northern part of the basin, the areas with significant risings of water table 

are under the influence of irrigated crops there located. The areas with risings in 

the eastern part of the basin belong to the porous hydrogeological system P4. 

These locations have shallow soils, with slightly fluctuating water tables close to 

the ground surface. The contribution of this subsystem to the groundwater 

system of the Jardim river watershed is restricted (Lousada, 2005). The 

degradation of the Cerrado vegetation in these areas could be a reason of 
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systematic rising of the water table depths. This vegetation does not explore the 

water reserves during all year long as agricultural crops, given time to aquifer 

recharge. In the western part of the basin, the risings are associated with the 

fractured hydrogeological system Canastra. The porosity of the bedrock 

material acts as a sponge, holding the water that is not use by the degradated 

pastures areas presented there. Also, this vegetation does not have root 

systems long enough to reach and use this water. The map of the kriging 

standard deviations reflects the accuracy of the predicted systematic changes 

of water table depth. The large standard deviations reflect the large uncertainty 

in the LTP parameters. Large uncertainty implies that observed lowerings and 

risings of the water table depth may not be statistically significant.  

 

4.3.3.3   Cross-validation 

The results of the universal kriging were evaluated by cross-validation. Table 

4.3 gives the results.  

 

Table 4.3 - Cross-validation for the spatial interpolation of  LTP (meters). 

 

 Observed Predicted Pred. – Obs. Pred. SD Z-score 

Min -3.9200 -1.6020 -2.9240 1.1580 -2.2710 

1st Q -0.8952 -0.5655 -0.8108 1.2120 -0.6629 

Median -0.1595 -0.1963 -0.2134 1.2440 -0.1727 

3rd Q 0.9463 0.2274 1.0150 1.2920 0.7775 

Max 2.3600 1.1220 3.4180 1.3460 2.7380 

Mean -0.1456 -0.1456 0.0007 1.2490 0.0005 

SD 1.4040 0.6120 1.3890 0.0511 1.1130 

Pred.=Predicted; Obs.=Observed; Min=Minimum; 1st Q=First quantile; 3rd Q=Third 

quantile; Max=Maximum; SD=Standard deviation; Z-score=(Pred-Obs) / Kriging 

variance. 
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The cross-validation results indicate large interpolation errors. These errors can 

be explained from the uncertainty about the LTP parameters at the 37 well 

locations, the poor relationship between land use and LTP and the poor spatial 

correlation structure in the stochastic residual of the universal kriging model. 

The Z-score mean and standard deviation of the Z-score indicate a good 

performance of the kriging system, with values close to zero and one, 

respectively. Compared with Manzione et al. (2006) and Manzione et al. 

(2007b) the interpolation performed better here with the parameters of the 

model better adjusted. 

 

4.3.3.4   Statistical significance of LTP 

The systematic changes were mapped and the significance of these estimations 

checked at 5 and 10% probability levels. In Manzione et al. (2006) were not 

found significant risings of the water table. Two spots with systematic lowering 

were indicated. These two spots are areas with intensive irrigation (Figure 4.7, 

left).  

 

 

 

Figure 4.7 - Significant lowerings of WTD verified for 908 days monitoring (left) and 

1240 days monitoring (center) and significant risings of WTD for 1240 days monitoring 

(right). 
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Again, following the recommendation of Manzione et al. (2006) we continued 

monitoring to obtain more accurate estimates of the trends in future. We 

investigate systematic changes in the water table depths for a period of 1240 

days, from October 11, 2003 until March 03, 2007. As can be seeing in Figure 

4.7 (center), extending the analyses for a longer period, it confirms spots where 

the water levels are decreasing. These areas in the course of the river with 

significant systematic lowerings deserve attention because a few years ago a 

barrage was constructed there as water reservoir to supply irrigation of small 

crops. The trend analyses for a monitored period of 1240 days also reveal 

areas significant systematic risings of the water table depths (Figure 4.7, right). 

Due to the slowness and long memories, the groundwater system could 

recharge during the monitored period in some areas, resulting in rising water 

tables.  

 

4.4    Discussion 

Human interventions and the changes in the Cerrado environment over the last 

decades can change the hydrological system, affect water availability and lead 

to water shortage. Following the evolution of trends during time is essential to 

water policy and decision making. Areas with systematic risings in water table 

depths indicate favourable areas for water use, where the levels are increasing 

and the aquifer recharging. Attention should be paid in order to explore these 

water reserves because this rising could be just an indication that the areas are 

under recovering water reserves. If the levels were too low, the areas could be 

just returning to original water table levels. Continuing monitoring these effects 

is important to distinguish systematic changes in water table depths and short 

term variations due to climatological conditions over a period. 

 

4.5    Conclusions 

Time series modelling is an effective method to characterize the seasonal 

patterns of water table depths in the Cerrado. The PIRFICT-model adjusts IR 
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functions for different responses of the hydrological system over the Jardim 

River watershed and the calibrated parameters interpreted physically. 

Calibrations were getting more accurate adjusting the length of the time series 

to cover the long memories of the water system. 

 

The water table depths in the study area appear to have changed systematically 

between October 2003 and March 2007. Trend monitoring is important in 

evaluating changes in water table depths. Time series models are important 

tools in trend monitoring, especially in areas like the Cerrado which are affected 

by seasonality and under pressure of an intense use of water resources. The 

monitoring in the Jardim river watershed showed persistent patterns of 

significant systematic lowering in water table depths as well effect of rainy years 

in the aquifer recharge.  

 

Ancillary information on land use reduced the variance and incorporated 

physical meaning in the spatial prediction model. Uncertainty about the spatial 

interpolation was reduced analyzing longer time series.  

 

For more reliable results, which can be utilised in water management and policy 

making, we recommend to continue monitoring. 
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5 PREDICTIVE RISK MAPPING OF WATER TABLE DEPTHS IN A 

BRAZILIAN CERRADO AREAH 

5.1    Introduction 

Time series models provide a systematic empirical method of estimating and 

predicting the temporal behaviour of dynamic hydrological phenomenon (Box & 

Jenkins, 1976; Hipel & McLeod, 1994). Time series modelling allow us to 

simulate and forecast the behaviour of hydrologic systems and to quantify the 

expected accuracy of these forecasts (Tankersley & Graham, 1993; Salas & 

Pielke, 2003). In areas where the water resources are under effect of seasonal 

influences, like the Cerrado, an especially useful application of TFN models is 

when we are interested in the probability of extremes. Such probabilities are 

underestimated when using only the deterministic model (Knotters & Van 

Walsum, 1997). A stochastic model considers the unexplained part or noise 

model component. This is interesting for estimations of extreme water table 

depths because uncertainties can be quantified. Using a time series model with 

added noise it is possible to simulate over periods that do not have 

observations, as long as data on explanatory series are available.  

 

Models using precipitation surplus/deficit as an input variable, calibrated on time 

series of water table depths of limited length, enable us to simulate series of 

extensive length (Knotters, 2001). WTD values not influenced by the particular 

weather circumstances during the monitoring period of water table depths (like 

short-term variations) are estimated from these extensive series. These 

estimations can be made for any specific date in any future year, given the 

                                                 
‡ A previous version of this chapter was presented in the 5th International Symposium on Spatial 
Data Quality and published in the proceedings, Manzione, R. L., Knotters, M., Heuvelink, G. B. 
M., Von Asmuth, J. R., Câmara, G. CDROM 
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prevailing hydrological and climatic conditions. These may include expected 

values of WTD at certain times, as the start of the growing season, or 

probabilities that critical levels are exceeded at certain times or during certain 

periods. These target parameters are estimated with the purpose of obtaining 

characteristics of a certain time.  

 

The aims of this study are to estimate and map the expected WTD in a 

watershed located at the Brazilian Cerrados. We calculated and measured risks 

that critical levels are exceeded, simulating realizations of the PIRFICT-model. 

These estimations are made for specific dates in any future year, to support 

decision making in long-term water policy and indicate areas with potential risks 

of future water shortage and shallow water table depths. In addition, the 

uncertainty associated with the estimated WTD is quantified. 

 

5.2    Material and methods 

5.2.1   Simulating water table depths 

Time series models using precipitation surplus/deficit as input variable, 

calibrated on time series of WTD with limited years, enable us to simulate series 

of extensive length (Knotters & Van Walsum, 1997). Statistics of WTD are 

estimated from extensive series. These statistics will represent the prevailing 

hydrological and climatic conditions rather than specific meteorological 

circumstances during the monitoring period of WTD.  

 

To link the response characteristics of the water table system to the dynamic 

behaviour of the input, Von Asmuth et al. (2002) presented a transfer function-

noise model in continuous time, the so-called PIRFICT-model. The simulation of 

WTD presented here is based on a time frequency filtering of the PIRFICT-

model performed as a convolution in the time frequency domain. This procedure 

considers the shape of the PIII df adjusted from the parameters of each model. 

Interacting the precipitation input signal and the aquifer system can be regarded 
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as an operation in the time frequency domain between the time frequency 

expansion of the signal and the time frequency response of the system. An 

important advantage in the use of the PIRFICT-model here, compared with 

discrete-time TFN-models, is that it can deal with input and output series which 

have different observation frequencies and irregular time intervals. 

 

These models contain a dynamic component, describing the dynamic 

relationship between the input and the output, either physically or empirically. 

But variation of the water table cannot be completely explained from the 

precipitation and evapotranspiration series. So, the models must contain a 

noise component, which describes the part of water table variation that cannot 

be explained with the used physical concepts or empirically from the input 

series. The noise component has to be considered in the simulation procedure, 

since we are interested in statistics of extremes, like the probabilities that critical 

levels are exceeded. Details about simulations for water resources can be 

found in Hipel & McLeod (1994). Here, the following steps are followed: 

 

a) After modelling the relationship between precipitation surplus/deficit 

and WTD using the PIRFICT-model, series of water table depths are 

extrapolated to 30 years. It is assumed the average weather 

conditions during the last 30 years represent the prevailing climate. As 

result, deterministic series of predicted WTD are generated. 

b) Realizations of the noise process are generated by stochastic 

simulation and next added to deterministic series resulting in 

realizations of series of WTD. Realizations of the noise process can be 

generated either by random sampling from a normal distribution with 

zero mean and residual variance, or by resampling from the fitted 

residuals. 
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c) From the previous steps, N realizations of the stochastic simulation are 

generated.  Statistics representing the prevailing hydrologic conditions 

are calculated from the WTD PDF for each t instant.  

 

In this study, we applied random sampling from a normal distribution. We 

extrapolate WTD series from a monitoring period of 1240 days (from October 

11, 2003 until March 06, 2007) to 30 years length series using available 30 

years length series of precipitation and potential evapotranspiration. 

 

5.2.2   Risk assessment of water table depths 

We calculate statistics about WTD to set up two risk situations: risk of water 

shortage and risk of shallow WTD. The estimations of process characteristics 

were made for two specific interesting dates in the Cerrado region: 

 

a) Beginning of the planting season: This date has special interest for the 

Cerrados. The wet season usually starts around this period and 

farmers use to start cultivations just after the first rains of the season. 

We considered October 1st as a hypothetical date for the beginning of 

the planting season. 

b) End of wet season: This is another important date in the Cerrados 

because the water table reaches the highest levels. Also it is the date 

when the cultivations ends and harvest operations start in the fields. 

We considered April 30 as a hypothetical date for this scenario. 

 

PDF’s were calculated from the simulated WTD series. We selected the 0.05 

percentile for water shortage. We can say that the area have just 5% probability 

to have lower WTD than these values and 95% probability to have higher 

values. The limits established for risks of water shortage were the depth of the 
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wells, with dry wells characterizing a scenario of water shortage in the area. 

Moisture stress at every stage of plant development can reduce seed yields, but 

the extent of yield decrease from water stress varies with stage development. At 

the beginning of the planting season it can be a problem during for plants 

development, affecting water availability and resulting in production losses. In 

the end of the wet season, close to the end of the corn productive cycle, for 

example, it can reduce pollination successes; affect kernel development and 

grain fill. For soybeans, it can abort flowers, reduce pod set and pod filling.  

 

For risk of shallow water tables we selected the 0.95 percentile. We can say 

that the area have just 5% probability to have higher WTD than these values 

and 95% probability to have lower values.  The limits established for risks of 

shallow water table depths were 0.5 meters bellow the ground surface. Shallow 

water tables can be a problem for machinery. At the beginning of the planting 

season shallow water tables are problematic because they can make it 

impossible to plow and execute planting operations. Also it can influence soil 

conditions, decreasing the soil redox potential, increasing the pH in acid soils 

and decreasing it in alkaline soils, and increasing the conductivity and ion 

exchange reactions. These changes in the system have direct influence in plant 

growth, by affecting the availability and toxicity of nutrients, regulating uptake in 

the rhizosfere. In the end of wet season shallow WTD can impossible harvest or 

even delay conditions for plants maturation, for example. 

 

5.2.3   Regionalizing simulated water table depths 

The results of WTD simulations are interpolated spatially using Universal 

Kriging (Matheron, 1969; Pebesma, 2004). A digital elevation model (DEM) with 

15 meters resolution provides ancillary information related to local 

geomorphology (Lousada, 2005). The use of exhaustive information on 

elevation is interesting because it can decrease the variance and the 

uncertainty in the spatial prediction model. Also, when the ancillary information 
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is physically related to target variable it can incorporate physical meaning to the 

predictions (Manzione et al., 2007a). In our case areas with relatively low 

elevation and close to drainages present relatively shallow water tables, 

whereas in areas with relatively high elevation and far from drainages the water 

table is relatively deep (Furley, 1999). 

 

DEM can be incorporated as a drift (Odeh et al., 1994; Knotters et al., 1995) in 

the spatial prediction model. Let the estimated characteristic, e. g. probability of 

exceedance, be given as z(x1), z(x2), T, z(xn), where xi is a  (two-dimensional) 

well location and n is the number of observations (i.e., n=37). At a new, 

unvisited location x0 in the area, z(x0) is predicted by summing the predicted 

drift and the interpolated residual (Odeh et al., 1994; Hengl et al., 2004): 

 

                                               )(ˆ)(ˆ)(ˆ 000 xexmxz +=                                        (5.1) 

 

where the drift m is fitted by linear regression analysis, and the residuals e are 

interpolated using kriging:  
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Here, the βk are estimated drift model coefficients, qk(x0) is the kth external 

explanatory variable (predictor) at location x0, p is the number of predictors, 

wi(x0) are the kriging weights and e(xi) are the zero-mean regression residuals. 

In this case, for WTD, the model was formulated as follows: 

 

                                )()()( 00100 xexEVxWTD +⋅+= ββ                                 (5.3) 
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where EV is the elevation value for each location and e is a zero-mean spatially 

correlated residual. Its spatial correlation structure is characterized by a 

semivariogram. 

 

5.2.4   Summary of the method 

In summary, the method described consists of the following steps: 

 

a) Calibration of the PIRFICT-model; 

b) Stochastic simulation of WTD series by using the PIRFICT-model 

(N=1000) and input series of 30 years length; 

c) Pick all selected date values of WTD generated by stochastic 

simulation; 

d) Create a probability distribution function (PDF) of these values; 

e) Selection of percentile values for WTD; 

f) Repeat steps above for all wells; 

g) Model the spatial structure of the percentile values with geostatistical 

techniques; 

h) Finally, we use these percentiles to create risk maps of water levels 

that could be exceeded at the selected date with extreme values of the 

PDF. 

 

5.3   Results 

5.3.1   Simulation with the PIRFICT-model 
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Stochastic simulation with the PIRFICT-model was performed for the 37 wells. 

For ten wells the simulation results showed that the supposed stationarity 

conditions were not met. The distribution functions of the simulated WTD for 

these wells were bimodal.  

 

Possibly these results can be explained from the relatively short length of the 

water table time series which did not completely cover the response time of the 

hydrological system. Another reason could be the strong influence of long-term 

WTD variations in the time series used to extrapolate the results. For example, 

the dry years of 2001, 2002 and 2003 might have a long-term effect on water 

table in systems with long hydrological memory. This effect acts different over 

the basin, due the presence of different geological systems (Lousada, 2005). 

Continuing monitoring WTD would enable us to clarify these questions (De 

Gruijter et al., 2006). Manzione et al. (2007b) found the same problem 

simulating WTD series from October 11, 2003 until October 06, 2006. 

Increasing the length of the time series in 5 months (until March 03, 2007) was 

not enough to clarify this question. These ten wells were excluded from 

calculating the PDF’s and spatial interpolation. 

 

5.3.2   Risk Mapping 

5.3.2.1   Spatial modelling 

The WTD PDF’s for October 1st and April 30 are created from the simulated 

data for the remaining wells. The WTD’s which are expected to be exceeded 

with 5% and 95% probability, have a spatial dependence which was modelled 

by semivariograms. Ancillary information was used in spatial predictions, 

because the number of observation points was relatively low. Including 

elevation as a spatial drift into the geostatistical model caused a decrease in the 

semivariance as observed by Manzione et al. (2007a). Table 5.1 summarizes 

the adjusted semivariograms. 

 



 105

The spatial dependence at short distances is poorly estimated because of the 

small number of observation wells that are fairly uniformly spread across the 

area. The nugget parameter of the semivariogram reflects the measurement 

precision of the WTD and the short-distance spatial variation in WTD.  

Table 5.1 - Parameters of the adjusted semivariograms for the selected percentiles 

from the simulated WTD PDF’s at October 1st and April 30. 

 

WTD Model Nugget Sill Contribution Range (m) 

P 0.05 Oct 1st Spherical 4 26 22 2400 

P 0.95 Oct 1st Spherical 3 18 15 2400 

P 0.05 Apr 30 Spherical 5 19 14 2400 

P 0.95 Apr 30 Spherical 4 11.5 7.5 2400 

 

5.3.2.2   Spatial interpolation 

Universal kriging interpolation resulted in maps with a physical meaning related 

to the local drainage. These maps were applied to quantify the risks to be 

utilised in water management to evaluate water shortage and wet conditions for 

agricultural purposes. Figures 5.1 and 5.2 give the results for October 1st and 

Figures 5.3 and 5.4 the results for April 30.  
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Figure 5.1 - Map of WTD levels (meters) that will be exceeded with 95% probability at 

October 1st (left) and the corresponding kriging variance (right).  

 

 

 

Figure 5.2 - Map of WTD levels (meters) that will be exceeded with 5% probability at 

October 1st (left) and the corresponding kriging variance (right).   
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Figure 5.3 - Map of WTD levels (meters) that will be exceeded with 95% probability at 

Apr 30 (left) and the corresponding kriging variance (right). 
 

 

 

Figure 5.4 - Map of WTD levels (meters) that will be exceeded with 5% probability at 

Apr 30 (left) and the corresponding kriging variance (right). 

 

Kriging variance maps present different results. The variances presented in the 

maps result of the spatial model adjusted for each situation. Even adjusted for 

the same range, the semivariogram parameters influence the estimations. The 

semivariograms with low nugget values produced more accurate estimates of 

WTD. The semivariograms with high sill values produced maps with high 

uncertainty about the estimates.  

 

5.3.2.3   Cross-validation 

The results of spatial interpolation were evaluated by cross-validation. Tables 

5.2 and 5.3 give the results for October 1st and April 30, respectively.  
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Table 5.2 - Cross-validation for spatial interpolation of WTD (meters) for October 1st. 

 

 Observed Predicted Pred. – Obs. Pred. SD Z-score 

P 0.05      

Min -20.76 -14.44 -10.01 3.99 -2.18 

1st Q -11.47 -9.76 -2.01 4.54 0.40 

Median -8.49 -8.93 1.15 4.78 0.24 

3rd Q -7.36 -7.86 2.64 5.04 0.58 

Max -0.67 -5.64 12.06 5.55 2.39 

Mean -9.03 -9.08 -0.05 4.78 -0.005 

SD 4.76 1.79 5.38 0.42 1.09 

P 0.95      

Min -16.66 -11.11 -7.29 3.36 -1.90 

1st Q -8.87 -6.90 -3.03 3.79 -0.83 

Median -5.81 -6.13 0.90 3.98 0.24 

3rd Q -3.08 -5.17 2.29 4.20 0.56 

Max -0.11 -2.03 10.53 4.62 2.50 

Mean -6.10 -6.07 0.03 3.99 0.004 

SD 4.21 1.79 4.66 0.34 1.14 

Pred.=Predicted; Obs.=Observed; Min=Minimum; 1st Q=First quantile; 3rd Q=Third 

quantile; Max=Maximum; SD=Standard deviation; Z-score=(Pred-Obs) / Kriging 

variance. 

 

The SD-values of the observations are much higher than those of predictions, 

pointing to smoothed interpolation values (For example. 4.76 vs. 1.79 and 4.21 

vs. 1.79 in Table 5.2 or 4.19 vs. 3.47 and 3.28 vs. 1.86 in Table 5.3). The errors 

can be explained from uncertainty about the calibrated models, a poor 

relationship between elevation and WTD and from a poor spatial correlation 

structure in both kriging models. 
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Table 5.3 - Cross-validation for spatial interpolation of WTD (meters) for April 30. 

 

 Observed Predicted Pred. – Obs. Pred. SD Z-score 

P 0.05      

Min -18.53 -12.45 -8.95 3.66 -2.21 

1st Q -9.77 -8.29 -3.02 4.02 -0.79 

Median -6.87 -7.06 -0.03 4.18 -0.01 

3rd Q -4.49 -5.84 2.81 4.35 0.72 

Max -0.49 -3.47 11.32 4.76 2.59 

Mean -7.22 -7.26 -0.04 4.19 -0.004 

SD 4.19 3.47 4.61 0.29 1.09 

P 0.95      

Min -11.35 -7.49 -5.06 2.93 -1.60 

1st Q -5.29 -4.36 -2.49 3.14 -0.75 

Median -1.48 -2.29 -0.97 3.26 -0.27 

3rd Q -0.06 -1.61 2.35 3.36 0.72 

Max 0.10 -0.24 8.12 3.66 2.41 

Mean -2.90 -2.92 -0.01 3.27 -0.002 

SD 3.28 1.86 3.39 0.19 1.04 

Pred.=Predicted; Obs.=Observed; Min=Minimum; 1st Q=First quantile; 3rd Q=Third 

quantile; Max=Maximum; SD=Standard deviation; Z-score=(Pred-Obs) / Kriging 

variance. 

 

Predictions on Tables 5.2 and 5.3 had the mean WTD value respected and 

showed small mean interpolation errors (-0.05 and 0.03 meters at Table 5.2, 

and -0.04 and -0.01 at Table 5.3). The mean and standard deviation of the Z-

score had values close to zero and one, respectively, which suggests a good 

performance of the kriging systems. In both cases, the model with high nugget 

values produced maps with high mean Z-score, reflecting higher errors in the 
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spatial model and spatial interpolation. Comparing with Manzione et al. (2007b) 

the interpolation performed better for October 1st here but the results were 

smoothed. 

 

5.3.2.4   Risk areas 

Manzione et al. (2007) applied the PIRFICT-model in simulations, to predict risk 

of water shortage and shallow water table depths for October 1st. They found a 

negligible risk of shallow water tables or water shortage for this date. We found 

the same results simulating the PIRFICT-model with a long WTD time series. 

 

For April 30, there is also a negligible risk of water shortage. On the other hand, 

we detected 3 areas with potential risk of shallow water table depths (Figure 

5.5). Fortunately, these areas are close to the drainages and under legal 

protection. The Brazilian legislation fixes maintenance of gallery forest along 

rivers courses. Remove this vegetation characterize an environmental crime, so 

farmers avoid cultivations in such areas.  
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Figure 5.5 - Areas with risks of shallow water table depths at Apr 30.  

The risk spot in the western part of the basin deserve some attention. Crops 

locate inside and close to this area present potential risk of shallow water table 

depths. 

 

5.4    Discussion 

Information about hydrological systems and water table variations is important 

for water management and is needed to assess choices for long-term water 

management policy. Preferably, uncertainty about the future water table depths 

is quantified to enable risk assessment.  

 

Time series modelling using the PIRFICT-model was efficient to model a wide 

range of different responses of the hydrological system presented over the 

basin. Policy makers can and should use these results to optimize water use 

and to regulate the competing claims for water resources that often occur 

between small farmers, big farmers with irrigated crops and water withdrawal for 

human use. However, the results reflect uncertainties from different sources: 

uncertainties related to the data (observed WTD, climatic database, DEM), 

uncertainty associated with time series modelling and with the model of spatial 

variation.  

 

The quality of the map was restricted by effects of relatively short time series 

that did not satisfactory characterize long memory systems. The quality of the 

time series models depends on both sampling frequency and length of series. 

The quality of the model of spatial structure depends on the number of wells 

and their sample configuration. The use of DEM as ancillary information slightly 

improved the quality of the final risk maps.  

 

5.5    Conclusions 
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Simulating water table depths at long periods using a stochastic model enabled 

us to predict water levels without influences of isolated short-term climatic 

disturbances. The results support decision making in long-term water policy and 

suggest areas with potential risks of shallow or deep water table depths. 

 

For October 1st there is a negligible risk of water shortage and shallow water 

table depths that could affect agriculture in someway. For April 30 there is 

negligible risk of water shortage, but 3 risk spots of shallow water table depths 

were found. The analysis should be extended to other dates and periods that 

are critical to water supply. The method presented in this study enables this 

extension to predict risks at any date in future.  

 

Given the long memories in the hydrological system of the study area, we 

recommend to continue monitoring water table depths to obtain more reliable 

results in future. 
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6 CONCLUSIONS AND FUTURE WORK 

6.1    Introduction 

This thesis presents methods to support water management by modelling the 

spatio-temporal dynamics of water table depths. We show how to estimate the 

water volume lost during a specific season, using a linear coregionalization 

model. We show how to apply the PIRFICT time series model to an area in the 

Brazilian Cerrado. We present how to predict risks of extreme water levels for 

agriculture in the region. These results aim at contributing to improve water 

management for crop production in Cerrado areas. In this final chapter, we 

discuss the results presented in chapters 3, 4 and 5, report problems found 

during this research, and point out some possible improvements and future 

work. 

 

6.2    Jardim River watershed 

Monitoring water table depths for agro-ecological purposes in Brazil is 

uncommon. Monitoring data are scarce mainly because of the costs to set up a 

sampling network and the lack of human resources to perform field 

observations frequently. The Jardim River watershed is among the few 

watersheds which present several observation wells at this scale. 

 

In this study, the observation wells are part of a subproject of Agricultural 

Technology Development Project for Brazil (PRODETAB) entitled “Water 

resources characterization, availability and demand for irrigated agriculture in 

the Jardim River watershed”. This project is an agreement between the 

Brazilian Government and the World Bank, managed by EMBRAPA (Brazilian 

Agricultural Research Corporation) and including University of Brasília (UnB) 

and INPE.  The project ended in 2006 after three years of financial support. 
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After the project finished, the monitoring continues, and the data are shared by 

EMBRAPA Cerrados and UnB.  

At first, the plan to drill 60 wells was considered unfeasible. After several 

meetings, the leaders of the project agreed on the number and the locations of 

the wells. Some wells got dry after some weeks. Probably the bedrock under 

pressure or impermeable layers obstructed the water flow. This study used data 

from 40 wells, excluding outliers or erratic information. This thesis is a result of 

these investments. Lousada (2005) presented the first result that used the 

project’s data.  

 

6.3    Data modelling in space and time 

6.3.1   Geostatistical modelling 

We used geostatistical tools to describe the spatial distribution of water table 

depths in the watershed. The available data was used to describe the spatio-

temporal variability of water table depths with a linear coregionalization model. 

Accounting for uncertainty in this modelling prevents for overestimation or 

underestimation of water resources for agriculture. Characterization of the 

natural discharge helps in preventing water shortage and improving land use for 

agricultural and ecological purposes. 

 

If more information were available in the spatial and time domains, different 

geostatistical methods could be applied. Space-time variograms (Kiriakidis & 

Journel, 1999; Heuvelink & Webster, 2000; Bechini et al., 2000; Snepvangers et 

al., 2003) can account for spatial and temporal correlation among time steps but 

need a large amount of data and are difficult to adjust. An important 

disadvantage of the purely geostatistical approaches to spatio-temporal 

modelling is that it is not easy to incorporate physically based knowledge in the 

model (Heuvelink & Webster, 2001). 

 



 115

Geostatistical approaches make use of assumptions like stationarity, in either 

space or time. Essentially, these methods are based on data, not necessarily 

incorporating physical knowledge into the models. When geostatistical methods 

are applied to describe the spatiotemporal variation of water properties over 

long periods (longer than we present in chapter 3, for example), it is difficult to 

hold such strong assumptions without incorporating any physical knowledge to 

describe the processes.  

 

Also, with more available information from observation wells, some stratification 

could be performed for spatial prediction, isolating effects from the different 

hydrogeological domains presented in the Jardim River watershed. 

 

One point that could be improved in future situations is the lack of validation 

points. Validation experiments are important sources of information in the 

applicability of the models in quantification of uncertainty. Simple statistical 

measures to evaluate model quality have been applied in several studies 

(Knotters, 2001; Mardikis et al., 2005; Leterme et al., 2007). We advise 

validation in studies for practical purposes. In our situation, a good design for a 

validation set should be the installation of validation wells covering all soil types, 

hydrogeological domains and land uses of the basin, to contrast with modelling 

results of the observation wells. The number of wells would be restricted to the 

budget to drill new wells. 

 

6.3.2   Time series modelling 

The regionalized time series models that were applied in this study were 

devised for studies at regional scale where available information is scarce 

(Knotters, 2001). Stochastic methods were applied to account for uncertainty in 

the modelling of water table depths. Transfer function models are in general 

considered as “black box models”, because they only describe the empirical 

relationship between precipitation surplus and water table depths without 
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physical knowledge about the process. Models are considered “white box 

models” when the models base on specific knowledge of the physical system 

(Knotters, 2001). The PIRFICT-model can be considered a middle term 

between these models, a “grey box model”. The choice for the PIRFICT model 

is motivated by finding an optimum between purely physical-deterministic 

models which need a lot of inputs and with which quantification of uncertainty is 

complex, and purely data-based black-box models that describe statistical 

relationships but make no physical sense. Models like PIRFICT cover the most 

important physical processes, and enable us to quantify uncertainty. 

 

The PIRFICT-model is based on the impulse response function, reflecting the 

physical relationship between precipitation surplus and water table depth, and 

calibrated on observed data. This linear relationship is only an approximation. 

Threshold nonlinearities in transfer functions arise from different soil layers and 

drainage levels. The results show the different responses of the hydrological 

systems in the Jardim River watershed as well the long memories of the system 

in some areas. The modelling reveals systematic changes in water table depth 

due to human interventions in the watershed and recharge of the aquifer over 

the monitoring period.  

 

Time series modelling and geostatistical methodology were combined to 

describe the spatio-temporal dynamics of water table depth. The use of 

universal kriging enables us to incorporate ancillary information from digital 

elevation models and land use in the spatial prediction models, improving the 

estimations by reducing the variance on the spatial model. 

 

6.3.3   Monitoring water table depths 

For a monitoring period of 1240 days, model calibrations were better, model 

parameters better adjusted and more significant than for a monitoring period of 

908 or 1092 days (Manzione et al., 2006; Manzione et al., 2007b). Long-term 
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monitoring confirmed the hypothesis about the long memories of the water 

system. The mapping of the linear trend parameter of the PIRFICT-model 

(presented on Chapter 4) showed aquifer recharge at 2006 after the wet years 

of 2001, 2002 and 2003.  

 

The improvements in the model results achieved by using a longer time series 

express the dependence of the PIRFICT-model on data input. Larger 

improvements can even be expected, if a more reliable local climatological 

monitoring in the Jardim River watershed were available. Therefore, installation 

of a climate station inside the basin is recommended. Another suggestion is to 

unify farmers located inside the basin to measure and record local 

climatological events and report them to public institutions. To obtain more 

reliable information, we recommend that monitoring of water table depth 

continues. 

 

6.3.4   Estimating characteristics of water table depths for risk analyses 

and water management 

Estimating characteristics of water table depths through stochastic models 

representing the prevailing climatic and hydrological conditions enabled risk 

assessment to support water management. These characteristics are, in this 

study, water table depths that are exceeded with a certain probability at a 

crucial day in the season, probabilities of exceedance, temporal trends and 

expected water table depths. We express the risks by probabilities, not involving 

costs on the analysis. We detected areas and delimitated risk areas of water 

table depths for the fixed limits. The extension of these analyses to other dates 

and with different limits can be applied in water policy, water resources 

management and water planning. The results support decision making and 

should be used in maintaining productivity in the agricultural crops, in natural 

resources preservation and in poverty mitigation in areas affected by seasonal 

climatic effects. However, it should be emphasized that the uncertainty is 
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described by models. Parameter uncertainty or model uncertainty (arising from 

the choice for a specific model) are not accounted for. Therefore, validation sets 

are needed to evaluate and, if necessary, to improve the uncertainty 

quantification. 

 

In the simulation experiment we have decided to first calculate the model for 

each well and later interpolate the outputs. This question was addressed at 

Stein et al. (1991) and Bosma et al. (1994) as interpolate first/calculate later (IC) 

or calculate first/interpolate later (CI). Heuvelink & Pebesma (1999) recommend 

IC procedure as a preferable choice because it can be a more efficient way to 

characterize the spatial distribution of individual inputs. The authors argue that 

the kriging step of CI does not fully exploit all available information.  There is not 

an agreement about this topic. Stein et al. (1991) found that CI performs better 

than IC to simulate soil moisture. Heuvelink & Pebesma (1999) find the opposite 

in a case study using a linear pedotransfer function. Sinowski et al. (1997) 

present regionalized soil retention curves in which IC performed better than CI. 

In IC procedures, all model inputs need to be interpolated, what can increase 

errors in model application (Bechini et al., 2000). Bechini et al. (2003) present 

that even if less powerful in theory, CI performed better than IC for simulating 

soil physical properties for irrigation, when comparing the results with an 

independent data set. Leterme et al. (2007) found higher values for pesticide 

leaching using CI than using IC, but the spatial patterns did not change 

significantly. 

 

In our case, the model parameters did not show a strong spatial structure. The 

IC procedure should be applied only if high quality and reliable spatial and 

temporal structures are identified for model inputs (Bechini et al., 2000). The 

PIRFICT-model is calibrated for each well to improve the local estimations. The 

impulse-response function in the PIRFICT-model reflects the physical 

relationship between the input on precipitation surplus and the output on water 

table depth. The impulse-response function works as a filter, reconstructing the 
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time series of water table depths from the inputs. The uncertainty about the true 

water table depths is described by the stochastic component of the PIRFICT-

model. This uncertainty arises from the schematization of the model, 

measurement errors etc. Also, individual information about the local system is 

aggregated to the prediction. The physical bases are improving the predictions. 

Here, the choice for calculate the model first and then interpolate is a better 

procedure to explore the physical bases of the time series model. Alternatively, 

if the model parameters present strong spatial correlation, interpolate them and 

then calculate the models should bring some benefits. 

 

The PIRFICT-model has five parameters, what can propagate errors arising 

from parameter uncertainty. In some wells, the parameters of the PIRFICT-

model were still not reasonably calibrated, due to the long memories of the 

hydrological system and the relatively short observed time series of water table 

depths. Also, calculating the simulations was a computational intense task. 

Leterme et al. (2007) explained how IC could have much lower computational 

costs. IC procedures should perform better for nonlinear models (Bechini et al., 

2000). For linear relations between model inputs and output, IC and CI should 

produce similar estimations (Heuvelink & Pebesma, 1999)). The PIRFICT-

model describes the linear relationship between precipitation surplus and water 

table depths. This relationship is established by an IR function, which represent 

the memory of the system. Finding out if IC and CI perform similar to 

simulations of the PIRFICT-model is an interesting topic for further analysis. To 

explore all available information about the processes under study, we opted for 

universal kriging as a method to incorporate ancillary information as a drift in the 

spatial model. This drift was a digital elevation model with plenty information for 

the whole area. 

 

6.3.5   Uncertainty measures 
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Various sources of uncertainty can be distinguished: data (observed water table 

depths, climatic database, image classification, digital elevation model), 

uncertainty associated with time series modelling and with the model of spatial 

variation. Uncertainty is inherent on data and on process modelling. Policy 

makers should consider uncertainty, probabilities and risks in plans for water 

management. Stochastic methods, such as applied in this study, enable to 

account for uncertainty in decision making. 

 

Utilisation of statistical information on uncertainty in the practice of water 

management is a big challenge. Reducing uncertainty and optimizing 

monitoring strategies are part of a successful plan for water management, but 

the costs involved should be considered. A balance should be found between 

efforts to reduce uncertainty, such as collecting more data and applying more 

complex models, and the risks which can be avoided by these efforts.  

 

6.4    Some topics for future work 

Interesting topics for future research arise from the discussions in the previous 

sections. It would be interesting to continue monitoring water table depths to 

analyze longer time series and obtain better calibrations of the models. It can 

lead to improve estimates of the spatial structure of model parameters. IC 

methods can produce different results from those presented in Chapter 5. The 

results of IC and CI should be compared by validation. The behaviour of IR 

functions adjusted by the PIRFICT-model for each grid cell through an IC 

procedure is a still unknown question. Modelling procedures which enable to 

interpolate the PIRFICT-model parameters before calculates and simulates 

water table depths can integrate these questions (Carneiro, 2006). 

 

Integration of models that describe the spatio-temporal variation of water table 

depths with weather forecast methods should enable the development of 

warning systems. These systems predict future water table depths, or statistical 
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characteristics describing future fluctuations of water table depths, from a 

simulated input on weather. For instance, such a system can inform us when 

some critical level will be reached. From this point of view, as described at De 

Gruijter et al. (2006), the water table depths monitoring would involve not only 

the status of the water system (status monitoring) and check for trends 

presented in the universe (trend monitoring) as was demonstrated in this thesis, 

but also decide whether the universe satisfies regulatory conditions (compliance 

monitoring). Since 2000 the European community is following the precautionary 

principle (European Commission, 2000) to establish standards on water use. 

When these standards about water levels, pollution, availability and other risk 

situations are met, actions are taken to the burden of proof falls on those who 

would advocate taking the interventions in the hydrological system. This 

regulatory information could substantially improve water management and 

prevent for risks related to water table depths, at local and regional scales. 

Warming systems could alarm when these standards are met.  
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ANNEX A – DESCRIPTION OF OBSERVATION WELLS LOCATIONS 

CONSIDERING SOIL TYPE, HYDROGEOLOGICAL DOMAINS AND ACTUAL 

LAND USE  

          
Wells 

Number 
Soil 

Types 
Hydrologic 
Porous 

al Domains 
Fractured 

Actual  
Land Use 

W12 LV P1 R3/Q3 AG 
W56 LVA P1 R3/Q3 AG 
W50 LVA P1 R3/Q3 AG 
W57 LVA P1 R3/Q3 AG 
W11 LVA P1 R3/Q3 AG/P 
W55 LVA P1 R3/Q3 AG 
W46 Cx P4 R4 AG/P/CV 
W13 LV P2 R4 AG 
W47 LVA P2 R4 CV 
W04 Cx P2 R4 P 
W03 Fx P2 R4 CV 
W16 LV P2 R4 AG 
W52 LVA P2 Bambuí AG 
W17 LV P2 R4 AG 
W49 LVA P2 R4 AG 
W37 Cx P2 R4 P 
W36 Cx P4 Canastra P 
W38 Cx P4 Bambuí CV 
W18 LV P2 Bambuí AG 
W33 LV P2 Bambuí AG 
W25 LV P2 Bambuí AG 
W26 Cx P4 Bambuí CV/AG 
W27 Gx P2 Bambuí CV/AG 
W24 LV P2 Bambuí AG/P 
W40 Cx P2 Bambuí P 
W10 LVA P2 Bambuí P/AG 
W20 LV P2 Canastra P/AG 
W44 Gx P2 Canastra AG/CV 
W22 LV P2 Canastra AG/CV 
W42 Gx P2 Canastra AG/CV 
W05 LVA P2 Canastra AG 
W61 LVA P2 Canastra AG/P/CV 
W41 Cx P4 Canastra AG 
W59 LVA P2 Canastra AG/P/CV 
W06 LVA P2 Canastra AG/P 
W60 Cx P4 Canastra P/AG 
W30 LV P2 Canastra AG/P/CV 
W54 LVA P2 Canastra CV/P 
W08 LVA P2 Canastra P/AG 
W31 LV P2 Canastra AG 

Legend: LV-Red Latosol, LVA-Red Yellow Latosol, Cx-Haplic Cambisol, Gx-Haplic 

Gleysol, Fx-Haplic Plinthosol, AG-Agriculture, P-Pasture, CV-Cerrado Vegetation. 
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ANNEX B – FLOWCHART OF THE PRESENTED METHODOLOGY FOR 

WATER TABLE MODELING IN THE CERRADOS 
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ANNEX C - IMPLEMENTED CODE FOR PIRFICT-MODEL SIMULATION AND 

ESTIMATION OF WATER TABLE CHARACTERISTICS 

 

%Stochastic Simulation of water table depths from Menyanthes export files 
% 
% 
%load Menyanthes export file 
load W01.mat%name of the file 
% 
% 
% function [hsim,ssim,pint,d1,error] = simulate(m,simdates,hini,usethresh,stoch) 
% 
% output variables: 
%   hsim        = simulated groundwater level [dates values] 
%   ssim        = simulated noise [dates values] 
%   pint        = 95% prediction interval 
%   d1          = regional drainage level in non-linear model 
%   error       = possible error message 
% input variables: 
%   m           = structure with model data 
%   simdates    = column vector with dates for which the simulation should be calculated  
%   hini        = initial groundwater level for non-linear model 
%   usetresh    = boolean defining if the threshold is used in non-linear models 
%   stoch       = boolean defining if the simulation is stochastic or not 
% 
% 
%define simulated dates interval(31/01/1974-06/08/20006) in numbers as Menyanthes export 
D=[721932:732895]' 
% 
% 
%number of simulations 
N=1000; 
% 
% 
%loop for run the simulate function N times 
for i=1:N 
    hsim(:,i)=simulate(M,D,0,0,1); 
end 
% 
%remove warming up period to let the hsim matrix with 30 years 
H30=hsim(913:11876,1:1000) 
%sampling the new simulation matrix H30 
Day='01' 
Month='Oct' 
count1=0; 
s=datestr(D,1); 
for j=1:length(D) 
    if (min(s(j,1:2)==Day>0.5))&(min(s(j,4:6)==Month)>0.5) 
        count1=count1+1 
        Daux(count1)=D(j); 
        Haux(count1,:)=H30(j,:); 
    end 
end 
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%Calculation of Water Table characteristics after Stochastic simulation 
% 
% 
%calculate percentiles 
Hdef=reshape(Haux,size(Haux,1)*size(Haux,2),1) 
X=sort(Hdef); 
L=length(Hdef); 
Phat=((1:L)-0.5)/L; 
P=[0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95]; 
Qhat=interp1(Phat,X,P) 
% 
%Plot results 
%Normal Probability Plot 
normplot(Hdef) 
%Frequecy Histogram 
[E,Y]=hist(Hdef,15) 
bar(Y,E,1) 
title('Histogram of Simulated WTD for Oct 1st') 
ylabel('Frequency') 
xlabel('WTD (m)') 
% 
% 
%Verify shallow condition (# of events) 
count2=zeros(1,size(H30,2)); 
for j=1:length(D) 
    cond1=H30(j,:)>-0.5;%upper limit 
    count2=count2+cond1; 
end 
PSH=sum(count2)/(j*N);%probability of event during the simulated period 
% 
% 
%Verify dry well condition (# of events) 
count3=zeros(1,size(H30,2)); 
for j=1:length(D) 
    cond2=H30(j,:)<-10;%lower limit 
    count3=count3+cond2; 
end 
PDR=sum(count3)/(j*N);%probability of event during the simulated period 
% 
% 
%Verify consecutive days for some event 
%Dry wells 
count4=zeros(1,size(H30,2)); 
MW=10; %moving window (size=#days for specified event) 
for j=1:size(H30,1)-MW+1 
    cond3=H30(j:j+MW-1,:)>-0.5 %verify if the indicated condition is satisfyed 
    soma3(j,:)=sum(cond3) 
    aux1=soma3(j,:)==MW 
    aux2=aux1*0 
    if j>1  
        aux2=soma3(j,:)==soma3(j-1,:)&soma3(j,:)==MW 
    end 
    count4=count4+aux1-aux2 
end 
% 
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%Shallow water table 
count5=zeros(1,size(H30,2)); 
MW=10; %moving window (size=#days for specified event) 
for j=1:size(H30,1)-MW+1 
    cond4=H30(j:j+MW-1,:)<-10 %verify if the indicated condition is satisfyed 
    soma4(j,:)=sum(cond4) 
    aux3=soma4(j,:)==MW 
    aux4=aux3*0 
    if j>1  
        aux4=soma4(j,:)==soma4(j-1,:)&soma4(j,:)==MW 
    end 
    count5=count5+aux3-aux4 
end 
 


