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Abstract

This paper introduces the gstat package for the S language (R, S-PLUS).
The package provides multivariable geostatistical modelling, prediction and
simulation, as well as several visualisation functions. Gstat (http://www.
gstat.org) was started 10 years ago and was released under the GPL in 1996;
it is closely linked to several GIS systems. It was not initially written for teach-
ing purposes, but for research purposes, emphasizing flexibility, scalability and
portability. It can deal with a large number of practical issues in geostatis-
tics, including change of support (block kriging), simple/ordinary/universal
(co)kriging, fast local neighbourhood selection, flexible trend modelling, vari-
ables with different sampling configurations, and efficient simulation of large
spatially correlated random fields, indicator kriging and simulation, and (di-
rectional) variogram and cross variogram modelling. The formula/models
interface is used to define multivariable geostatistical models. This paper
presents the functionality provided by the gstat S package, discusses a num-
ber of design and implementation issues, and advantages and shortcomings of
the S environment for multivariable geostatistics.

1 Introduction

Geostatistics is not a new subject in the S community, and several packages or
libraries are available. Some of these were developed for teaching purposes, and
some have have very advanced, cutting edge functionality. Still, all of them lack
a number of features that are commonly used in applied geostatistics (e.g., Isaaks
and Srivastava, 1989), notably block kriging, kriging in a local neighbourhood, and
multivariable variogram modelling, kriging and simulation.

Gstat (Pebesma and Wesseling, 1998) used to be a stand-alone computer pro-
gram that provides all these features, but that has no graphics capabilities of its
own. It has an interactive user interface for variogram modelling, but uses gnuplot
for visualizing the variograms. Also, it can read and write point data and raster map
data to and from 7 different geographic information systems (among which GRASS,

http://www.gstat.org
http://www.gstat.org
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PCRaster, and GMT); graphical user interfaces that use gstat as a back-end have
been developed within the Idrisi and ArcInfo environments.

The S (R/S-PLUS) environment has much to offer to a multivariable geo-
statistics program without graphics capabilities, especially with the Trellis/lattice
graphics environment. The gstat S package, introduced in this paper, offers most
of the functionality of the gstat stand-alone program to S users, and provides a
number of useful wrapper functions to plot spatial point data, multiple grid maps,
and multivariable or directional variograms.

2 Multivariable geostatistics

2.1 The univariable model

Let Z(s) be a vector of length n with observations Z(s1), ..., Z(sn) observed at spa-
tial locations si arbitrarily spread in R1, R2 or R3. The variability in observations
Z(s) is usually thought of as consisting of a trend and a residual, and the trend is
modelled as a linear function,

Z(s) =
p∑

j=0

Xj(s)βj + e(s) = Xβ + e(s) (1)

with Xj(s), j > 0, the p explanatory or predictor variables, with β0 usually being
an intercept and X0(s) ≡ 1, with β the vector with unknown regression coefficients,
and with e(s) the residual vector. For spatial data, residuals are usually spatially
correlated, and given the covariance matrix V of e(s), best linear unbiased prediction
(kriging) of Z(s0) at an unobserved location s0 is obtained by

Ẑ(s0) = x(s0)β̂ + v′V −1(Z(s)−Xβ̂) (2)

with x(s0) the row of X that would have corresponded to Z(s0), with β̂ = (X ′V −1X)−1

X ′V −1Z(s) the generalised least squares estimate of the trend coefficients where X ′

denotes the transpose of X, and with v = (Cov(Z(s0), Z(s1)), ...,Cov(Z(s0), Z(sn)))′

where Cov(·, ·) denotes covariance.
The corresponding prediction error variance is

σ2(s0) = σ2
0 − v′V −1v + (x(s0)− v′V −1X)(X ′V −1X)−1(x(s0)− v′V −1X)′ (3)

where σ2
0 is Var(Z(s0)).

2.2 The multivariable model

Multivariable prediction involves multiple, spatially and cross-variable correlated
variables. Consider m distinct variables, and let Zi(s), Xi, β

i, ei(s), xi(s0), vi and
Vi all correspond to the i-th variable. Next, let Z(s) = (Z1(s)′, ..., Zm(s)′)′, B =
(β1′, ..., βm′)′, e(s) = (e1(s)′, ..., em(s)′)′,

X =


X1 0 ... 0
0 X2 ... 0
...

...
. . .

...
0 0 ... Xm

 , x(s0) =


x1(s0) 0 ... 0

0 x2(s0) ... 0
...

...
. . .

...
0 0 ... xm(s0)
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with 0 conforming zero matrices, and

v =


v1,1 v1,2 ... v1,m

v2,1 v2,2 ... v2,m

...
...

. . .
...

vm,1 vm,2 ... vm,m

 , V =


V1,1 V1,2 ... V1,m

V2,1 V2,2 ... V2,m

...
...

. . .
...

Vm,1 Vm,2 ... Vm,m


where element i of vk,l is Cov(Zk(si), Zl(s0)), and where element (i, j) of Vk,l is
Cov(Zk(si), Zl(sj)).

The multivariable prediction equations equal (2) and (3) when all matrices are
substituted by their multivariable (bold case) forms (see also Ver Hoef and Cressie,
1993), and when in (3) σ2

0 is substituted by Σ with Cov(Zi(s), Zj(s)) in its (i, j)-th
element. Note that (3) is now a prediction error covariance matrix.

The implementation of this model in gstat does not pose restrictions to the
number of variables m, and each variable can have its own set of predictor variables,
number of observations and unique observation locations. Covariances are specified
by ways of variogram functions and cross variogram functions.

Gstat provides a number of highly useful extensions to the straightforward ap-
plication of (2) and (3):

Kriging in a local neighbourhood Instead of using all data, only data in a local
neighbourhood around s0 are used for predicting Z(s0), where neighbourhood
can be defined in terms of distance to s0 or in terms of the number of nearest
observations. There are two good reasons for restricting kriging to a local
neighbourhood. First, the system V −1X becomes prohibitively large when
data are abundant (n � 103) or when sequential simulation is used to simulate
large fields. Second, the assumption of spatially constant trend coefficients in
(1) may need to be relaxed to apply only to local neighbourhoods. Gstat
takes care of cases where one or more of the variables are missing in a local
neighbourhood, defined by a distance criterion.

Block kriging Instead of predicting Z(s0) (point kriging), block kriging aims at
predicting the average of Z(·) over a larger support (area or volume) B0:
Z(B0) = |B0|−1

∫
B0

Z(s)ds, with |B0| the area (or volume) of B0. Blocks B0

may be rectangular or irregular (specified by a number of points discretizing
B0). Although the interest was originally limited to mining applications,
block kriging is now widely used in environmental applications when spatially
aggregated predictions for larger areas are required, or when point support
predictions are too inaccurate.

Simple and ordinary kriging In certain cases, the trend coefficients can be as-
sumed known e.g. when an other mechanism, such as an external deterministic
model takes care of estimating them. In this case, called simple kriging, β
is substituted for β̂ in (2), and the third term on the right hand side of (3)
disappears. Another simplified version of universal kriging is ordinary kriging,
which contains only an intercept (p = 0).

Shared trend coefficients Suppose a single variable is measured by two different
devices, each having its own noise characteristics. In this case, their variability
can be thought of as consisting of a common trend and separate residual char-
acteristics. Examples are found in Isaaks and Srivastava (1989, pp 409-416),
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or references to collocated cokriging found in Goovaerts (1997) or Wackernagel
(1998).

Debugging results Near-singularities may occur for a number of reasons, such
as near-zero distances between data points, or linear dependencies among
columns of a (locally formed) matrix X. Gstat has many debug modes for
obtaining information on all aspects of the systems, and can verify that es-
timated condition numbers of V and X ′V −1X stay below a user-specified
threshold.

2.3 Sequential simulation

Sequential simulation (Johnson, 1987; Gómez-Hernández and Journel, 1993) in-
volves the generation of many independent realisations of a Gaussian (or in case
of indicator simulation, binary) random field, conditional to observed data, that
honour the variogram (covariance) of the random field. Gstat uses the sequential
simulation algorithm because it is versatile, efficient, and suitable for large to very
large fields (number of nodes � 106).

Traditionally, simulation algorithms only involved the simulation of the residual
part of (1), although some attempts to stretch this have been reported (Goovaerts,
1997). This can be seen as the simulation equivalent of simple kriging. Gstat imple-
ments a wider class that also addresses estimation errors of the trend coefficients,
and uses an algorithm that was reported (although somewhat hidden) in Abraham-
sen and Espen Benth (2001). It involves the simulation of trend coefficients drawn
from N(β̂, (X ′V −1X)−1), followed by simulating residuals with respect to the trend
coefficients drawn. It is the simulation equivalent of universal kriging.

2.4 Variogram modelling

All methods mentioned above assume that the residual covariance is known. A
common convention is to enter the covariance by ways of the variogram. Gstat
calculates direct sample variograms, cross variograms (“classical” cross variograms
for variables that have identical locations, pseudo-cross variograms (Ver Hoef and
Cressie, 1993) when they don’t), and can fit nested variogram models to sample
variograms. In fitting direct and cross variogram models, it can also guarantee
that the fitted model obeys the linear model of coregionalisation (Goovaerts, 1997),
ensuring that cross covariance matrices are positive definite. Furthermore, gstat
can calculate and visualize directional variograms, variogram clouds, and provides
identification through interactive examination (for example of extreme points) in
the variogram cloud.

Variogram models may consist of the sum of one or more basic models, that
include the Nugget, Exponential, Spherical, Gaussian, Linear, Power model. Each
basic model can have its own 2D or 3D geometric or zonal anisotropy parameters
defined. The gstat S package also includes the Matérn class, strongly recommended
by Stein (1999), but does not (yet, as of version 0.9-4) fit its parameters.
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3 Implementation

3.1 User interface

The gstat S package provides a formula-based interface such as found in lm() and
its family. One formula is used to define how the response depends on the predic-
tor variables, and a second formula defines the spatial coordinates. Calculating a
residual variogram of log(zinc) as a function of dist with spatial coordinates in
x and y, found in data frame meuse, looks like:

variogram(log(zinc)~dist, ~x+y, meuse)

Univariate universal kriging on locations defined in meuse.grid, using a fitted
(residual) variogram model vgm.mod is obtained by

krige(log(zinc)~dist, ~x+y, meuse, meuse.grid, vgm.mod)

and 50 conditional simulations are obtained by

krige(log(zinc)~dist, ~x+y, meuse, meuse.grid, vgm.mod,
nmax = 20, nsim = 50)

where nmax refers to the neighbourhood size, needed by the sequential simulation
algorithm.

For multivariable prediction or simulation, we need to specify for each variable
at least two formula’s and a data frame. All this information is stored in a (nested)
list of class gstat, which is built one variable at a time, by a function (surprisingly)
called gstat:

meuse.g <- gstat(id = "log-zn", formula = log(zinc)~1, locations = ~x+y,
data = meuse)

meuse.g <- gstat(meuse.g, id = "log-cu", log(copper)~1, ~x+y, meuse)
...

that can accumulate an arbitrary number of variables. Suppose meuse.g is filled
with the four heavy metal variables measured in the meuse data set, then the four
commands

meuse.g <- gstat(meuse.g, model=vgm(1, "Sph", 900, nugget = 1), fill.all=T)
x <- variogram(meuse.g, cutoff=1000)
meuse.fit = fit.lmc(x, meuse.g)
plot(x, model = meuse.fit)
meuse.cok <- predict(meuse.fit, newdata = meuse.grid)

(i) fill all variogram models with the same initial (Nugget + Spherical) variogram
model, (ii) calculate sample variograms and cross variograms, (iii) fit a linear model
of coregionalisation to direct and cross variograms, (iv) plot the variograms and
fitted models (Figure 1), and (v) store four-variate cokriging predictions and pre-
diction error (co)variances in meuse.cok.

The prediction function, predict.gstat, is the prediction and simulation engine
of gstat. Depending on the data it is fed with, it decides what to do; Figure 2
shows the decision tree. The list of user functions in package gstat is shown in
Table 1
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Figure 1: direct sample variograms (diagonal), cross variograms (off-diagonal) and
fitted linear model of coregionalisation for the four heavy metal variables in the
meuse data set
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Trend coefficients given? "simple"

"universal"

Sequential Indicator (co)simulation

Sequential Gaussian (co)simulation

(local) trend surface prediction

Inverse distance weighted interpolation

indicators?
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Simulations?
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Simple (co)krigingTrend coefficients given?
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Yes

No

No
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No

No
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Only intercept given?
Yes

No
Universal (co)kriging

Ordinary (co)kriging

Figure 2: Prediction method decision tree of predict.gstat (or krige); each of
the prediction methods may apply to points, rectangular blocks, or irregular blocks,
and may use all data or a selection of local data in a local neighbourhood around
each prediction location

3.2 C code

The gstat C code used for the gstat package consists of approximately 25000 lines
of ”native” gstat code, and 14000 lines of C code in the Meschach matrix library
(Stewart and Leyk, 1994) used by gstat. Because originally gstat was written as
a stand alone program (Pebesma and Wesseling, 1998), a large part of the effort
of writing a gstat package was dedicated towards making the code suitable as a
callable library. This involved removing many static variables, re-initialising the full
state of the library after every call from S, and writing wrapper functions around
log, warning and error messages.

Two important optimizations are implemented in the gstat C code. The first
is a fast neighbourhood search algorithm, based on the PR-bucket quadtree search
index structure (Hjaltason and Samet, 1995). The second is the realisation of many
simulated random fields in a single call following a single random path through the
simulation locations, re-using the expensive results, i.e. the neighbourhood selection
and V −1X.

All variogram models are defined in the gstat package are in the gstat C code
(although the Matérn class uses functions from libR), and provides not an easy
way to use variogram functions defined in S. Adding a function to the gstat C code
is a fairly straightforward, though.

4 Relation to other geostatistics packages

Ripley (2001) gives a short overview of available R packages for spatial statistics.
Geostatistics packages include spatial, sgeostat, geoR, and RandomFields. Most
of these packages provide variogram modelling, trend surface analysis and/or uni-
versal kriging. None of them provides kriging in a local neighbourhood, block
kriging, cokriging, or three-dimensional kriging. S-PLUS has a commercial module,
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gstat add variable definition to gstat object
variogram modelling:
variogram calculate sample variogram, directional sample vari-

ograms, or direct and cross variograms
fit.variogram fit variogram model coefficients to sample variogram
fit.lmc fit a linear model of coregionalisation to direct and

cross variograms
variogram.line calculates variogram values from a variogram model
prediction/simulation:
predict.gstat spatial prediction or simulation, see figure 2
krige univariable wrapper around gstat and

predict.gstat
krige.cv LOO or n-fold cross validation wrapper for krige
zerodist detect observations with the same location
graphics:
bubble bubble scatter plot for data or residuals (using color

for sign, size for value)
plot.variogram plot sample variogram (optional with number of

point pairs) and fitted model; uses conditioning plots
for directional or multivariable variograms (Figure 1)

plot.variogram.cloud plot variogram cloud, with options for interactive
point pairs identification

plot.point.pairs plot point pairs, identified by
plot.variogram.cloud, in a map

image.data.frame draw image for (x, y, z) values, stored in columns of
a data frame

map.to.lev stack data in the form (x, y, z1, z2, ..., zn) to a form,
suitable for plotting with levelplot

mapasp calculate aspect ratio for geographically correct lev-
elplot

Table 1: user functions in package gstat
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S+SpatialStats, that provides block kriging. Large parts of the geoR code (and its
extension geoRglm) address the uncertainty of estimated covariance parameters in
a Bayesian framework (sometimes called model-based kriging), an issue that seems
to be relevant especially for smaller data sets (Moyeed and Papritz, 2002).

5 Discussion

5.1 Flexibility

The gstat package provides a robust and flexible suite of univariable or multivari-
able geostatistical methods. From the following five items:

• 1-D, 2-D or 3-D

• point, regular block, or irregular block

• univariable, multiple (uncorrelated), or multivariable (correlated) cokriging

• global kriging or kriging in a local neighbourhood

• (co)kriging, unconditional or conditional (co)simulation

any combination (e.g., 3-D universal irregular block co-simulation) can be obtained
by the gstat package. Also, routines are available for very fast fitting of large num-
bers of direct and cross variograms. The objection to cokriging that the modelling
of a large number of (cross) variograms is prohibitively tedious can now only be put
in the past tense.

5.2 S visualisation

The major reason why S is a suitable environment for doing multivariable geostatis-
tics with gstat is its graphics capabilities. The gstat package gratefully uses the
Trellis/lattice functions to visualize its results, notably

• xyplot for visualising directional variograms and multivariable (direct and
cross) variograms (e.g. Figure 1), and to visualize spatial data and cross
validation residuals;

• levelplot for visualising (multiple) grid maps, using the aspect argument to
make them geographically correct (1 km north equals 1 km east, a convention
that even S+SpatialStats ignores);

• image for fast display of many grid maps; and

• plot and identify to identify extreme point pairs in a variogram cloud.

The graphics functions in table 1 are no more than simple wrapper functions around
the S graphics functions, but may be the most important ones to make an analysis
successful.
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5.3 S4 classes

The gstat package was written using S3 classes, mainly for efficiency (time) reasons.
Using S4 classes might make the package more robust, and would definitely be the
way to go when maintainers of the major R geostats packages could agree on a set
of useful classes, e.g. for spatial data, grid maps, sample variograms, variogram
models, and maybe even kriging/simulation specifications.

5.4 Gstat features missing in the S package

The major functionality of stand-alone gstat is made available in the package, but a
number of features are missing. Most of them have to do with the lack of (explicit)
spatial data structures for grid or vector data. Stratified mode: the gstat program
has an efficient way of dealing with a stratification, where each stratum has its own
data, variogram and prediction locations. Variogram maps are two-dimensional
variograms, calculated on a regular grid. Efficient variogram calculation for gridded
data: knowing the gridded topology of data, sample variograms can be calculated in
O(N), instead of O(N2). Multi-step simulation: (Gómez-Hernández, Journel, 1993)
the gstat code can use a recursively refining random visiting sequence (Pebesma and
Wesseling, 1998) for sequential simulation, but needs to know the grid topology
of prediction locations; currently a simple random path is chosen. Edges: open
or closed polygons can be defined to further constrain the search neighbourhood.
Quadrant/octant search neighbourhoods, variogram distance: are other methods to
refine search neighbourhoods based on direction or correlation. Latin hypercube
sampling of Gaussian random fields (Pebesma and Heuvelink, 1999) should be fairly
easy to re-implement in S.

5.5 Handling spatial data in S

Prediction locations are often gridded, and observations sometimes are. As noted
above, a number of efficiency gains can be obtained when the grid topology of data,
if present, is available to gstat. Storing prediction results as grids (2D matrices)
can be wasteful, because large part of the area may be filled with NA’s. Currently,
gstat resolves coordinates and explanatory variables at prediction locations using
model.matrix, which needs both observation data and prediction locations in data
frames. Storing output of predict.gstat as grids may be beneficial when they are
plotted with image, but not when they are plotted with levelplot. The conversion
of table data to gridded data seems to be O(N) (see function xyz2img in package
gstat).

As a result of the workshop on spatial data handling in R, a group of developers
working on spatial statistics will work towards a common class for spatial data. The
simples form of this is a data frame that documents which columns store the spatial
coordinates. If such a class is agreed upon, it would be trivial to modify the gstat
package such that the locations argument becomes obsolete.

5.6 Gstat S objects

Currently, gstat S objects store the complete data frame for each variable defined.
This decision was made for convenience, but may be very inefficient when working
with large data sets. Ideally, only references to data frames should be stored, along
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with the frame number, such that the reference can be resolved only when the actual
data are needed (i.e., during prediction, not while building gstat objects). At time
of this writing, work is in progress to resolve this issue.
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