Spatial Autocorrelation (2)
Spatial Weights

Luc Anselin
Spatial Analysis Laboratory
Dept. Agricultural and Consumer Economics
University of Illinois, Urbana-Champaign
http://sal.agecon.uiuc.edu
Outline

- Concepts
- Contiguity Weights
- Other Spatial Weights
- Spatial Lag Operator
Concepts
Why Spatial Weights?

- **Spatial Correlation**
 - $\text{Cov}[y_i, y_h] \neq 0$, for $i \neq h$

- **Structure of Correlation**
 - which i, h interact?
 - N observations to estimate $N(N-1)/2$ interactions
 - impose structure in terms of what are the “neighbors” for each location
Example: N=6

contiguity = common boundary
contiguity as a graph
link between nodes = contiguity
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

First Order Contiguity Matrix
Spatial Weights Matrix

- **Definition**
 - N by N positive matrix W, with elements w_{ij}

- **Simplest Form: Binary Contiguity**
 - $w_{ij} = 1$ for i and j “neighbors” (e.g. $d_{ij} < \text{critical distance}$)
 - $w_{ij} = 0$ otherwise, $w_{ii} = 0$ by convention

- **Row Standardization**
 - averaging of neighboring values
 - $w_{ij}^s = w_{ij} / \sum_j w_{ij}$ such that $\sum_j w_{ij}^s = 1$
 - spatial parameters comparable
How to Construct Weights

- Contiguity
 - common boundary

- Distance
 - distance band
 - k-nearest neighbors

- General
 - social distance
 - complex distance decay functions
Contiguity Weights
Contiguity – Regular Grid

- **Regular Grid**
 - rook
 - 2, 4, 6, 8
 - bishop
 - 1, 3, 7, 9
 - queen
 - both

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
```
Regular Grid Polygons
Contiguity and GIS Precision

- The regular “grid” in the top picture is actually misaligned at the corners.
- The grid on the bottom picture has the proper contiguity.
Contiguity – Irregular Units

- Irregular Units
 - common border
 - rook
 - common vertex
 - 039 and 067
 - queen
Contiguity Weights in GeoDa
Higher Order Contiguity

- **Recursive Definition**
 - j contiguous to i of order p:
 - j first order contiguous to k
 - k contiguous to i of order $p-1$
 - i and j not already contiguous of lower order

- **Spatial Weights Matrix**
 - representation of network or graph
contiguity as a graph
link between nodes = contiguity
Circularity and Redundancy in Higher Order Weights

- Powering of the Weights Matrix
 - standard approach invalid for contiguity
- Removing Circularity and Redundancy
 - sparse network representation of weights
 - modified Dijkstra algorithm to identify number of steps between nearest neighbors (Anselin and Smirnov)
 - number of steps = order of contiguity
First Order Contiguity Matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Second Power of First Order Contiguity

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Correct Second Order Contiguity Matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Matrix Constructed by Bottom-Up Algorithm

<table>
<thead>
<tr>
<th></th>
<th>-1</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Other Spatial Weights
Distance-Based Weights

- Distance Band
 - \(w_{ij} = 1 \) for \(d_{ij} < \) distance cut-off

- K-Nearest Neighbor Weights
 - \(k \) neighbors, irrespective of actual distance
 - “warps” space
Distance Based Weights

Distance Weight
- Threshold Distance: 0.824621

Distance Weight
- Threshold Distance: 1
- k-Nearest Neighbors: 3

© 2003 Luc Anselin, All Rights Reserved
General Spatial Weights

- Cliff-Ord Weights
 - \(w_{ij} \) to reflect potential spatial interaction between \(i \) and \(j \)
 - \(w_{ij} = [d_{ij}]^{-a} \cdot [b_{ij}]^b \)
 - with
 - \(d_{ij} \) as distance between \(i \) and \(j \)
 - \(b_{ij} \) as share of common boundary between \(i \) and \(j \) in perimeter of \(i \)
General Spatial Weights
(continued)

- Weights May Contain Parameters
 - inverse distance weights
 - \(w_{ij} = \frac{1}{d_{ij}^{\alpha}} \)
 - estimated from data or chosen a priori
 - in practice: second power (gravity model)
 - identification problems in nonlinear weights
 - interaction is multiplicative: \(\rho \cdot w_{ij} = \rho \left(\frac{1}{d_{ij}^{\alpha}} \right) \)
 - parameters \(\rho \) and \(\alpha \) not separately identified
General Spatial Weights
(continued)

- Economic Weights (Case)
 - block structure, state effect
 - $w_{ij} = 1$ for all i, j in "block"
 - economic distance $|r_i - r_j|$
 - economic weight $= 1/|r_i - r_j|$
 - e.g., $r =$ total employment
Characteristics of Spatial Weights

- Measures of Overall Connectedness
 - percent nonzero weights (sparseness)
 - average weight
 - average number of links
 - principal eigenvalue

- Location-Specific Measures
 - most/least connected observations
 - unconnected observations = islands
NC Counties with 4 Neighbors
Spatial Lag Operator
Spatial Shift

- No Direct Counterpart to Time Series Shift Operator
 - time series: $L_k = y_{t-k}$
 - spatial series: which h are shifted by “k” from location i?
 - on regular lattice: east, west, north, south
 - $(i - 1, j)$ $(i + 1, j)$ $(i, j - 1)$ $(i, j + 1)$
 - arbitrary for irregular lattice
 - different number of neighbors by observation
Spatial Lag Operator

- Distributed Lag
 - row-standardized weights $\Sigma_j w_{ij} = 1$
 - spatial lag is weighted average of neighboring values
 - $\Sigma_j w_{ij}y_j$, for each i
 - vector Wy
 - spatial lag does not contain y_i
- spatial lag is a smoother
 - not a window average
value $y_i = \$42,300$

4 neighbors
values for neighbors: $\$50,200, \$64,600, \$45,000, \$34,200$

spatial lag = $(1/4)\$50,200 + (1/4)\$64,600 + (1/4)\$45,000 + (1/4)\$34,200 = \$48,500$
<table>
<thead>
<tr>
<th>CNTY_</th>
<th>CNTY_ID</th>
<th>NAME</th>
<th>STATE_NAME</th>
<th>STATE_FIPS</th>
<th>CNTY_FIPS</th>
<th>FIPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>1986</td>
<td>Catawba</td>
<td>North Carolina</td>
<td>37</td>
<td>035</td>
<td>37035</td>
</tr>
<tr>
<td>39</td>
<td>1947</td>
<td>Iredell</td>
<td>North Carolina</td>
<td>37</td>
<td>097</td>
<td>37097</td>
</tr>
<tr>
<td>41</td>
<td>1950</td>
<td>Alexander</td>
<td>North Carolina</td>
<td>37</td>
<td>003</td>
<td>37003</td>
</tr>
<tr>
<td>34</td>
<td>1932</td>
<td>Caldwell</td>
<td>North Carolina</td>
<td>37</td>
<td>027</td>
<td>37027</td>
</tr>
<tr>
<td>18</td>
<td>1874</td>
<td>Wilkes</td>
<td>North Carolina</td>
<td>37</td>
<td>193</td>
<td>37193</td>
</tr>
</tbody>
</table>

Map Legend

Green areas represent the counties listed in the table.
Spatial Lags in GeoDa Table

<table>
<thead>
<tr>
<th>SIDR74</th>
<th>SIDR79</th>
<th>NWR74</th>
<th>NWR79</th>
<th>W_SIDR74</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.868961</td>
<td>3.050995</td>
<td>137.295794</td>
<td>132.790934</td>
<td>1.527684</td>
</tr>
<tr>
<td>0.966417</td>
<td>0.925926</td>
<td>276.395265</td>
<td>241.666667</td>
<td>1.198714</td>
</tr>
<tr>
<td>0.000000</td>
<td>1.188354</td>
<td>96.024006</td>
<td>89.126560</td>
<td>1.192336</td>
</tr>
<tr>
<td>1.662510</td>
<td>2.118145</td>
<td>85.619285</td>
<td>84.725818</td>
<td>0.715943</td>
</tr>
<tr>
<td>1.271456</td>
<td>1.879195</td>
<td>63.572791</td>
<td>59.597315</td>
<td>0.832222</td>
</tr>
<tr>
<td>5.388588</td>
<td>1.867885</td>
<td>758.175588</td>
<td>745.688818</td>
<td>4.618451</td>
</tr>
</tbody>
</table>