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INTRODUCTION

This tutorial discusses methods for the analysis of spatial data whose
location is associated to areas delimited by polygons. This situation
frequently occurs when we deal with events aggregated by city, districts or
census tract, where one doesn’t have the exact location of the events, but
instead, a value for the whole area. Some of these indicators are counts, as is
the case with the majority of the variables collected by the census: for
example, the Brazilian Institute of Geography and Statistics (IBGE) provides,
for each census tract, the number of family heads for each income range.
Various health indicators are also of this type: the Brazilian Ministry of
Health and the State Departments of Health organize and distribute data
about death and birth rates and contagious diseases by municipality. Using
two counts — deaths and population, for instance — density rates of incidence,
like death rate or incidence are estimated. Other very useful indicators are:
(a) proportions, like the percentage of illiterate adults; (b) averages, like the
mean income of the family head by census tract, and (c) medians, like the
median age for men.

The usual form for presenting data aggregated by area is using color
maps with the spatial pattern of the phenomena. Figure 1 shows the spatial
distribution of the social exclusion index' for 96 districts of the city of Sio
Paulo, from the data of the 1991 Census. It can be verified that 2/3 of the 96
districts of Sdo Paulo were below the minimum acceptable levels of social
inclusion in 1991. A strong polarization downtown-suburbs is clearly
perceptible in the map, that presents two great regions of social exclusion,
the South and East zones of the city. In the East zone, it is perceptible a
gradient in the index of social exclusion/inclusion that worsens as we move
away from the center. In the South zone, the index discontinuity is more

! The social exclusion/inclusion index is an aggregate measure of the socioeconomic disparities,
which vary from -1 to +1, where the value of 0 (zero) indicates a basic level of social
inclusion.
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relevant, and we notice the existence of districts with high indexes of social
exclusion/inclusion close to the excluded areas.
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Figure 1 — Index of social Exclusion/Inclusion of the districts in the city of S&o Paulo from
1991 data, with 96 districts grouped by sextiles.

A large part of the users limits their use of the GIS to these visualization
operations, drawing intuitive conclusions. But it is possible to go much
further. When we visualize a spatial pattern, it’s very useful to translate it
into objective considerations: is the observed pattern random or it represents
a definite aggregation? Can such distribution be associated to measurable
causes? Are the observed values enough to analyze the spatial phenomena to
be studied? Is there any group of areas with differentiated patterns within the
region of study?

To approach these issues, we presents a set of spatial analysis techniques
for data aggregated by areas. The first step is to choose the inference model
to be used. The most common hypothesis is to assume that the areas are
differentiated and that each one of them has an “identity” of its own. From
the statistical point of view, this implies that each area presents a probability
distribution different from the others, the so-called discrete model for spatial
data. The alternative is to assume that the studied phenomenon presents
spatial discontinuity, forming a surface, the so-called continuous model for
spatial data. In this case, the areas are considered just a support for data
collecting, and the inference model doesn’t take into consideration the limits
of each area. The production of surfaces from the areal data will be discussed
in the end of this tutorial.

The question of count aggregation in areas poses yet two important
conceptual problems: can the individual behavior be estimated from
aggregated data? How much does the behavior of the aggregate reflect more
than the sum of the individuals? What is the error in the estimation of the
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indicators when the counts are very small? In this tutorial, the basic concepts
for the spatial analysis of data aggregated by area will be presented after the
presentation of the adequate models for the analysis of data aggregated by
area.

MODELS FOR DATA DISTRIBUTION IN AREAS

The most frequently used model for areal data is the model of discrete
spatial variation. Consider the existence of a stochastic process Z, i = 1,...,1,
where Z, is the realization performance of the spatial process in the area 7 and
n is the total number of areas A, The main objective of the analysis is
constructing an approximation for the joint distribution of random variables
Z =1{72,...,Z,}, estimating its distribution.

Similar to the model of point events, consider Z; as the random variable
which describes the count, indicator or rate associated to area A;. We have an
observed value z,, corresponding to the count in the i-th area. The most
common hypothesis is to assume that the random variable Z, which describes
the number of occurrences in each area can be associated to a Poisson
Probability Distribution. Such hypothesis is reasonable because this is the
statistical distribution most adequate to phenomena involving the counting
of events, and such is the case of most of the data aggregated by area.
Evidently other distributions could be more adequate, depending on the
variable being analyzed. Rates could be modeled using the normal
distribution, for even though it admits negative values, which is evidently
impossible in this type of indicator, the properties of the normal distribution
can be adequate.

The alternative to the hypothesis of the discrete spatial variation is to
assume that the data presents a continuous spatial variation. Let’s consider a
stochastic process {Z(x),xe A,Ac R*}, whose values can be known in all

the points of the study area. In this case, the aggregate counts must be
transformed into rates or indicators, because rates vary continuously in space
while counts don’t. The use of continuous spatial models will be discussed in
the end of this tutorial.

THE MODIFIABLE AREA UNIT PROBLEM

One of the basic problems with data aggregated by area is that, for the
same population under study, the spatial definition of the frontiers of the
areas impacts the results obtained. The estimates obtained within a system of
units of area function of the many ways that these units can be grouped;
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different results can be obtained by just changing the frontiers of these zones.
This problem is known as the “The modifiable area unit problem”.

In many studies involving areal data, the aggregate data is the only
available source, but the object of study relates to the individual
characteristics and relationships. Some of these studies try to establish cause-
effect relationship among different measurements, as in the case of regression
models; a classic example is the correlation of the years of schooling of the
family head and his income, usually strong. Due to the effects of scale and of
the aggregation of areas, the coefficients of correlation can be entirely
different among the individuals and among the areas.

Consider a set of individuals and two characteristics of each measured
according to what is estimated in Figure 2. A regression considering all
individuals (black line in the box to the left) results in a positive coefficient of
0.1469. These individuals belong to distinct groups, separating each group by
the attribute color, we obtain a negative correlation, varying between —0.5
and —0.8. Using the means of each group (black line in the box to the right),
the coefficient gets to 0.99. It’s important to observe that each model
measures a different aspect and that there’s no correct model. In the first
case, we can say that without information that allows to differentiate the
individuals within the colored groups, the variables interrelate positively. In
the last example, the interest of the study is the effect of the variation in the
mean of a variable over the mean of another, in the groups. These are
different questions and different models.

Spatial Analysis of Geographic Data 4
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Figure 2 — Regression models: individuals, individuals in different strata and groups.

To illustrate the MAUP, we studied the Belo Horizonte city 1991
census data of 1991 in two scales: the census tracts and the planning units
(UP) as shown in Figure 2. The census tracts were used by the Brazilian
Census Bureau as the basic collection units, and the planning units
correspond to the area aggregations used by the Planning Department of
Belo Horizonte.

Figure 3. Census Tracts (left) and Planning Units (right) for the city of Belo Horizonte.

We computed 1,000 correlations between pairs of census, for both
scales (census tracts and planning units). For example, taking the variables
“number of family heads with 1 to 3 years of schooling” and “number of
family heads with 1 to 3 minimum wages” results in different correlations in
the case of census tracts (0.79) and for planning units (0.96). The results,
shown in Table 1, indicate that the correlations in the census tracts are
significantly lower than the correlations in the planning units. A total of 773
correlations are lower for the census tracts than for the planning units. Only
40 (4%) show the opposite behavior. In some situations, a change in signal
does occur, that is, variables that are negatively correlated in the census tracts

Spatial Analysis of Geographic Data 5
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become positively correlated. It is can be verified that the reduction in scale
(bigger areas) makes the data more homogeneous, reducing the random
fluctuation and reinforcing correlations that, thus, seems to be stronger than
in smaller areas.

The above results indicate that one cannot assure that any scale is the
“right” one, but which of the models better serve the objective of clarifying
the issue: weaker correlations and more random fluctuations, but with more
internal homogeneity, or stronger correlations with the bias introduced by
not considering the dispersion and the heterogeneity around the mean in the
greater areas. As a general rule we have: the more disaggregated the data the
greater the flexibility on choosing the models. Aggregating in bigger regions
is easy while disaggregating is impossible.

Table 1

Correlation between pairs of variables according to different units of area — Census tracts
and Planning Units — for the 1991 Census in the city of Belo Horizonte

Correlations per Planning Unit

-0,4/-0,2 | -0,2/0,0 | 0,0/0,2 | 0,2/0,4 | 0,4/0,6 | 0,6/0,8 | 0,8/1,0 | Pairs
-0,8/-0,6 0 0 1 1 1 0 2 5
-0,6/-0,4 2 11 7 4 2 7 0 33
E -0,4/-0,2 3 23 14 11 10 3 6 70
»
g -0,2/0,0 3 5 9 27 34 13 21 112
E 0,0/0,2 0 1 2 42 75 32 55 207
.§ 0,2/0,4 0 2 0 17 44 50 68 181
]
g 0,4/0,6 0 2 3 1 10 42 110 | 168
° 0,6/0,8 0 0 2 7 8 9 75 101
0,8/1,0 0 0 0 4 4 3 112 | 123
Total 8 45 38 114 | 187 | 159 | 449 | 1000

In practice, for confidentiality reasons, the individual data are seldom
available. What to do then? One possibility is to work with the data in the
greatest spatial scale possible, usually denominated micro-areas, for example,
census tracts and to use aggregation or combinatorial optimization techniques
to obtain more aggregated regions, but that preserve the phenomena under

Spatial Analysis of Geographic Data 6
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investigation as much as possible. This way, we must recognize that the
problem of scale is an inherent effect of the data aggregated by areas. It
cannot be removed and cannot be ignored. To minimize its impact with
relation to these studies, one must try to utilize the best available scale of
data retrieval using techniques that allow the treatment of the random
fluctuation, always looking for criteria for data aggregation that are
consistent with the objectives of the study.

EXPLORATORY SPATIAL DATA ANALYSIS

The techniques of exploratory analysis applied to spatial data are
essential to the development of the stages of spatial statistics modeling which
is, in general, sensitive to the type of distribution, to the presence of extreme
values and to the lack of stationarity. The techniques employed are, in
general, adaptations of commonplace tools. Thus, if during the investigation
of extreme values one utilizes graphic tools like histograms or boxplots, in
the spatial analysis it’s important to also investigate outliers not only inside
the data set but also relative to the neighborhood. Besides, the
nonstationarity of the spatial process within the region of study must also be
investigated, in its various aspects: mean variation (first order), spatial
variance and covariance.

Data visualization

The most simple and intuitive exploratory analysis is the visualization of
extreme values in the maps. It’s worth pointing out that the use of different
cut-points on the variable leads to the visualization of different aspects. The
GISs usually make available three methods of variable cut: equal intervals,
percentiles, and standard deviation. In the case of equal intervals where the
maximum and minimum values are divided by the number of classes, if the
variable has a distribution that is too concentrated on one side, the cut will
leave just a very small number of areas in the classes on the long leg of the
distribution; as a result, most of the areas will be allocated to one or two
colors. The use of percentiles for the definition of classes forces the
allocation of the polygons in equal number of colors; that could masquerade
significant differences in extreme values and hinder the identification of
critical areas. Finally, the use of standard deviation, where the distribution of
the variable is presented in different color gradations for values above and
below the mean, supposes the normality of the variable distribution; such
hypothesis is unrealistic in the case of census variables in countries of great
social inequalities like Brazil. In short, it’s an important part of the
exploratory analysis to try different cut points in the variable for visualizing
maps.

Spatial Analysis of Geographic Data 7
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The different techniques of visualization are illustrated in the following
example, where we show the spatial distribution of the indicator that
measures the proportion of healthy newborns (APGAR Scoring) for the
districts of Rio de Janeiro, in 1994.Two visualizations were generated, both
with § cut points and 5 colors. In Figure 4 we utilized quintiles and in Figure
5, five classes of equal size. Since the variable distribution is not symmetric,
when we divide it in classes of amplitude equal to lower (or worse) values,
signaled in red, we are reduced to less classes, while in the division by
quintiles, one fifth of the classes will be in each area. Then, the question is:
what do we want to show? Certainly, the pre-natal care social worker of the
region will not be happy seeing one fifth of the districts as being “high” risk
areas. On the other side, since the areas where the score is lower have a small
population, the reliability of the encountered values can be just an effect of
the random fluctuation described before. Is it worth then looking at maps?
Yes, of course, in the same way that we look at histograms and boxplots, and
always trying to look at the distribution using different cut points. GISs have
in general a standard form, but dozens of possibilities can and should be
explored.
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Figure 5 — Distribution of the APGAR Score, grouped in equal amplitude classes

Spatial Analysis of Geographic Data 8
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Another interesting question is the comparison of maps. Suppose the
spatial distribution of an indicator in different years: how can we visualize
the temporal evolution? Certainly the cut points of the variable in the
different periods must be the same. Observe in Figure 4 the temporal
evolution of the mortality due to homicide for the triennial 79-81 and 90-92,
in the state of Rio de Janeiro. The presentation of the quintiles for the joint
distribution of the indicators allows a good visualization of the extension of
this “disease”.

Triénio 79-81

Trienio 80-82

Figure 6 — Mortality due to homicides in Rio de Janeiro, for the triennials 79-81 and 80-92.

Spatial Analysis of Geographic Data 9
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Plots of Means and Medians

The plots of means and medians in lines and columns allow the
the (first
nonstationarity), and second order nonstationarity, where the variance and

simultaneous exploration of presence of a trend order
covariance between neighbors is not kept constant. To build these plots, we
utilize the coordinates of the centroids of the areas, approximating them to a
regular spacing in order to mount a matrix. Then we calculate the means and
medians of the indicator along the lines (East-West axis) and columns
(North-South axis) of this matrix. This technique allows the identification of
a fluctuation in the measures along two directions, suggesting the presence of
discrepant values when the difference between them is large, and the trend

along a direction when the values vary smoothly.
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Figure 7 — Means and medians of the schooling and income at the Governador Island.
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In Figure 7, we present the results of this technique, applied to two
socioeconomic indicators of 1991 Census — the average income of the family
head and the proportion of family heads with schooling greater than or equal
to secondary school — for the census tracts at Governador Island, in Rio de
Janeiro. This is composed of 225 census tracts, of which the centroids are
indicated in the first chart of the figure: observe that in the extremities of the
“map” the quantity of points is very small, and, consequently, any measures
inside this area will not be very robust.

In the North-South axis (columns) we can notice that the average
income of the family head presents a variable trend, much smaller in the
center of the region. The same occurs with the schooling, although with
greater fluctuation. In the East-West (lines) axis, there also seems to be some
shifting to higher values towards the east, but the shift of means (x) and
medians (o) suggest the presence of extreme values in the indicators. The
variation in the mean of the indicators in the region is, apparently, divided
between the two directions analyzed, and one can better explore these trends
by rotating the reference axis.

Analysis of Spatial Autocorrelation

Another stage of exploratory analysis intends to identify the structure of
the spatial correlation that better describes the data. The basic idea is to
estimate the magnitude of the spatial autocorrelation between the areas. In
this case, the tools utilized are the global Moran index, the Geary index and
the variogram. When we have a great number of areas, resulting, for
example, from detailed spatial scales, the nature of the processes involved is
such that it is highly probable that there are different sorts of spatial
correlation in different sub-regions. To illustrate these different sorts of
spatial autocorrelation we can wuse the local indicators of spatial
autocorrelation and the Moran scatter plot, also described in this section. All
of these statistics depend on the adopted definition of neighborhood,
discussed as follows.

Spatial Proximity Matrices

To estimate the spatial variability of areal data a fundamental tool is the
spatial proximity matrix, also called the neighborhood matrix. Given a set of
n areas {A,...A,} ,we build a matrix W (n x n), where each element w;
represents a measure of the proximity between A, and A, This proximity
measure can be calculated according to the following criteria.

* w; = 1 if the centroid of A; is within some distance from A;; on the

= 0.

contrary, w;

* w, = 1, if A, shares a common side with A, on the contrary w; = 0.

Spatial Analysis of Geographic Data 11
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* w; = l;/ I, where [; is the length of the frontier between A; and A; and /;
is the perimeter of A,.

Since the proximity matrix is utilized in the calculations of indicators
during the exploratory analysis phase, it is very useful to normalize its lines,
so that the sum of the weights of each line equals 1. This simplifies a lot
many calculations of spatial correlation indexes, as we will see shortly. Figure
8 illustrates a simple example of spatial proximity matrix, where the values
of the elements, that have been normalized, reflect the neighborhood criteria

A B C D E
0 05 0 05 0
025 0 025 025 025
0 050 o0 05
033 0,33 0 0 033
0 0,33 033 033 0

Moo=

Figure 8 — Spatial proximity matrix of first order, normalized by lines.

The idea of the spatial proximity matrix can be generalized to neighbors
of higher order (the neighbors of the neighbors). With a criteria analogous to
the one adopted for the first order spatial proximity matrix, one can
construct the matrixes W, ..., W® . For example, in Figure 6, the areas A
and C are neighbors in a second order spatial proximity matrix. In what
follows, to simplify, the coefficients of the first order matrix are designated
by w; and the ones from the order k& matrix by w,* and the matrixes are
normalized by lines.

Spatial Moving Averages

A simple form of exploring the variation in the data spatial trend is to
calculate the mean of the neighbor’s values. This reduces the spatial
variability, for the operation tends to produce a surface with less fluctuation
than the original data would. The moving average fI associated to the

attribute z;, relative to the i-th area, can be calculated from the elements w);
of the normalized spatial proximity matrix W, simply taking the neighbors
average:

&= wz (1)
=1

Spatial Analysis of Geographic Data 12
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Figure 9 illustrates the use of the moving average estimator for the
percentage of elders (more than 70 years old) in 96 districts of the city of Sao
Paulo. These data are indicators of the great social inequalities in the city,
with a great variation between downtown (where the proportion of elders
reaches 8%) and the suburbs (where there are regions with less than 1%).
The maximum value of elders’ percentage is 8.2% and the minimum 0.8%,
with a standard deviation of approximately 2%. With the local average there
is a smoothing: the minimum value is 1% and the maximum is reduced to
6.8%. It can be noticed in the comparison of the two maps of Figure 9 that
the local moving average provides a view of the great trends of the
phenomena under study and, in the case of the percentage of elders, it shows
a strong gradient downtown-suburbs.

%ldosos

Figure 9 — Distribution of elders in the city of S&o Paulo (1991 Census). On the left, a
presentation of the values by statistical distribution. On the right, the local moving average.

Global Indicators of Spatial Autocorrelation: Moran and Geary Indexes.

A fundamental aspect of the exploratory analysis is the characterization
of the spatial dependency, showing how the values are correlated in space.
Within this context, the functions used for estimating how much the
observed value of an attribute is dependent on the values of this same
variable in neighboring areas are the spatial autocorrelation and the
variogram. Moran’s global index [ is the autocorrelation expression
considering only the first neighbor.

Spatial Analysis of Geographic Data 13
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n

IPINCACEESCES

J = =l )

2(z-2)

In the equation above, 7 is the number of areas, z; the value of the

attribute considered in area i, z is the mean value of the attribute in the
region of study and w; the elements of the normalized spatial proximity
matrix. In this case, the correlation will be computed only for the neighbors
of first order in space, as established by the weights ;. The same calculation
done for higher order proximity matrixes allows the estimation of the
autocorrelation function for each order of neighborhood (or lag).
n
ny > w, " (z-2(z,-7)
JH = =l 3)

2(z-72)

In general, Moran’s index serves as a test where the null hypothesis is

the spatial independence; in this case its value would be zero. Positive values
(between 0 and +1) indicate a direct correlation, and negative values
(between -1 and 0) an inverse correlation. Once calculated, it’s important to
establish its statistical validity. In other words, would the measured values
represent a significant spatial correlation? To estimate the significance of the
index it will be necessary to associate it to a statistical distribution, usually,
the normal distribution. Another more usual approach, regardless the
distribution, is a pseudo-significance test. In this case, different permutations
of the attribute values associated to the regions are generated; each
permutation produces a new spatial arrangement, where the values are
redistributed among the areas. Since only one of the arrangements
corresponds to the observed situation, one can build an empirical distribution
of I, as shown in Figure 10. If the value of the index I originally measured
corresponds to an “extreme” of the simulated distribution, then it will be a
value of statistical significance.

In the case of the social inclusion/exclusion in Siao Paulo, shown in
Figure 1, the global Moran’s index measured is 0.642. A pseudo-distribution
with 100 values is shown in Figure 10. In this case, the value of the
significance associated is equal to 23, and that leads us to reject the null
hypothesis (no correlation between the regions), with a significance of
99.5%. We can say that the social exclusion in Sio Paulo presents a strong
spatial structure, partly a wide variation, or trend, partly spatial dependence
among neighbors.

Spatial Analysis of Geographic Data 14
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Figure 10 — Example of simulated distribution of the Moran index.

The implicit hypothesis of the calculation of the Moran index is the
stationarity of first and second order, and the index looses its validity when
calculated for non-stationary data. When there is a non-stationarity of first
order (trend), the neighbors will tend to have closer values than the ones
more distant because each value is compared to the global average, inflating
the index. On the same way, if the variance is not constant, in places of
higher variance the index will be lower, and vice-versa. When the data is
non-stationary, the autocorrelation function continues to decay even after
surpassing the distance where there are local influences. Some variations of
this model are the Geary C test and the Ipop test. The first (Geary C) differs
from the I test of Moran because it uses the difference between the pairs,
while Moran uses the difference between each point and the global average.
Thus, the C indicator of Geary resembles the variogram, while the I of
Moran resembles the correlogram.

(n=DY Y w5, 2,7

c= i=1 j=1 (4)

ZZWUiZf

i=1 j=1 i=1

The Ipop test is also used to detect deviations from a random spatial
distribution, however it incorporates the variation of the population within
the areas. It is thus sensitive to the occurrence of data clusters within the
areas — that is, a high occurrence of cases in a small population of one
municipality — besides the clusters among areas, where municipalities with
many cases are adjacent. So the Ipop index can be decomposed in an intra-
area and an inter-area component that can be presented as a percentage in
the results. The null hypothesis (H,) supposes that the geographical variation
in the number of cases follows the geographical variation of the size of the
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population, being particularly useful when the population of the areas is non-
homogeneous.

szm:iw,.j(ei —d,))e, —dj)—N(l—zz?)zm:w,.je,. —NEZm:wijd,.
i=1 j=1 i=l i=l

Ipop: m m m
(XY > ddw, - XD dw)b(1-b)
i=1

i=l j=I

(5)

Where:

m — Number of areas

N — Total number of cases in all the areas.

n;— Number of cases in area i

e, — Proportion of cases in area i (e; = n/N)

X — Total population in all the areas

x; — Size of population in area i

d; — Proportion of population in area 7 (d;=x/N)

Z; — Difference between the rate X; and the average of X

w; — Assigned weights according to the connection between the areas i
and j

b — Average Prevalence (N/X)

Table 2 presents the results of the tests for spatial clusters on the
mortality due to homicides, in the state of Rio de Janeiro. Notice that the
degree of significance of the Ipop test is greater than Moran’s, and that
approximately half of the aggregation is due to intra-municipality factors.
That is, besides the nearby municipalities presenting similar patterns, an
excess of cases exist within the violent municipalities that surpass the
expected in comparison to the population.

TABLE 2

RESULTS OF TESTS FOR SPATIAL CLUSTERS
HOMICIDES IN RIO DE JANEIRO, 90-92
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Moran I Ipop
Indicator 0.5861 0.00015
p-value 7.5091 88.9238
% between areas - 54.3
00 intra-areas - 47

Variogram

We can use the variogram as indicator of the spatial dependence. To do that
we associate the unique value of the attribute of each area to one point,
usually the geometrical or populational center of the polygon. Based on these
localizations, we calculate the variogram function. Notice that when the data
is non-stationary, the variogram also does not stabilize, but keeps on
increasing with the distance. As an example of the use of the variogram for
areal data, Figure 11 illustrates the Human Development Index — HDI - for
the state of Sdo Paulo, calculated by IPEA, based on the 1991 census. Figure
12 presents the variogram of the HDI, computed from the centroid of each

municipality.
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~ Figure 11 - HDI for S0 Paulo (1991 Census)
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Figure 12 — Experimental variogram for the HDI of Sdo Paulo (1991 census). Sample pass:
40 km (tolerance: 20 km).

What is shown in the variogram of Figure 11? On the X-axis, we present
the distances between the municipalities, and on the Y-axis, the means of the
square of the differences in the HDI, for municipalities separated by distance
ranges, with 40-km intervals and 20 km tolerance. This way, the first point
calculates the HDI difference between the municipalities whose distance
between the centers falls between 20 and 60 km, and so on, up to a distance
of 400 km. The graphic highlights a strong spatial dependency of the
indicators of quality of life in the municipalities of Sao Paulo. This is a result
of the occupation process of the state that followed regional perspectives.
Starting with the logic of the expansion of the coffee plantations in the XIX
century, we can observe today a region of strong farming production along
the axis of the Anhanguera highway, the predominance of farming in the
western region, and a strong industrial concentration in the Sio Paulo
metropolitan region, in the ABC region and in the middle Paraiba Valley.
Thus, all the historic processes point to a spatial dependence in the economic
development of the state.

To consider a further example, take into account a study about the
mortality due to homicide in the southeastern region, that are the cause of
more than 20% of the deaths among men between 15 and 45 years old in
Brazil. Figure 13 illustrates the spatial distribution of the mortality due to
homicide, using as indicator the logarithm of the specific mortality
coefficient per 100,000 residents within the same age group. Understanding
the violence process as an “epidemic” of modern times that propagates in
space, a simple visual observation allows us to identify a high incidence of
violent deaths in the state of Rio de Janeiro (R]), with a spatial trend capital-
inland. In the case of the states of Espirito Santo (ES) and Sdo Paulo (SP),
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there is a concentration around the capital and big cities. However, in the
state of Minas Gerais (MG), the most violent areas are located far from the
capital and big cities, what indicates a distinct spatial pattern. Additionally,
there is a well defined transition in the frontier between MG and R],

(4

indicating a change in the spreading conditions of the “violence epidemic”.
It’s worth remembering that we used the logarithm of the indicators since its
distribution is very concentrated around lower values, with a great tail to the

right.
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Figure 13 — Mortality due to homicide, Southeastern region of Brazil.

The correlogram of Figure 14 presents the spatial autocorrelation
among the municipalities of each state, expressed in terms of the function
defined by equation 3. The graphic indicates the existence of a strong spatial
trend in RJ, for the autocorrelation function does not stabilizes with distance,
but keeps on decreasing, on the contrary to MG, that does not present any
clear spatial dependence. In other words, in R] if the a municipality close by
a city is violent, it’s highly probable that this city is vilente too; the whole
state presents a regionalized violence structure, and the violence decays in the
inland. In MG this pattern is not observed: the violence seems to fluctuate
randomly.
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Figure 14 — Correlogram of the mortality due to homicide in the Southeast states .
The Moran Scater Plot

The Moran Scatter Plot is an additional tool for visualizing spatial
dependence. If constructed upon normalized values (the attribute values
subtracted of its average and divided by the standard deviation), it allows an
analysis of the behavior of the spatial variability. The idea is to compare the
normalized values of the attribute in an area with the average of their
neighbors, constructing a bidimensional plot of z (normalized values) by wz
(average of the neighbors), which is divided in four quadrants, as shown in
Figure 15 for the social inclusion/exclusion index of Sdo Paulo, 1991 Census.
The quadrants can be interpreted as:

® Q1 (positive values, positive means) and Q2 (negative values, negative
means): indicate points of positive spatial association, in the sense
that a place has neighbors with similar values.

® Q3 (positive values, negative means) and Q4 (negative values, positive
means): indicate points of negative spatial association, in the sense
that ' a  place  has neighbors  with  distinct  values.

Spatial Analysis of Geographic Data 20



pppeeetar L ANRAY Yoo U L AT RE

1
0,8 - [
: ¢ .
0,6 ..
Q4 :. R 4 Ql
0,4 - i o G ¢
LR I A
0,2 R FAN
N R NRO S S R
= 00q------- PRI U2 A
-0,2 | * .0 Q"‘ L ol .
*, 1
04 Q |, . Qs
"co 3 :
-0,6 - . !
0,8 :
-1,0 -0,5 0,0 0,5 1,0 1,5
y

Figure 15 — Moran Scatter Plot for the social inclusion/exclusion index of S&o Paulo, 1991
Census.

The Moran Scatter Plot corroborates the results presented, where we
indicate that Moran’s global index for the social inclusion/exclusion indicator
for the districts of Sio Paulo presented a statistically significant value. As
shown in Figure 15 most of the districts of Sio Paulo are located in
quadrants Q1 and Q2, that present a positive spatial association. The points
located in quadrants Q3 and Q4 can be seen as regions that do not follow the
same process of spatial dependence of the other observations. Evidently, the
diagram reflects the spatial structure in the two scales of analysis:
neighborhood and trend.

Moran’s I index is equivalent to the linear regression coefficient that
indicates the inclination of the regression line () of wz in z. In the case of
the data presented in Figure 15, this coefficient is equal to 0.642, the same
value calculated by applying the formula in equation 3. Moran’s scatter plot
can also be presented in the form of a bidimensional thematic map, where
each polygon is presented by indicating its quadrant in the scatter plot, as
illustrated in Figure 16, that shows the scatter plot of Moran’s index for the
social inclusion/exclusion index in the city of Sdo Paulo in 1991. In this
figure, “Alto-Alto”, “Baixo-Baixo”, “Alto-Baixo” and “Baixo-Alto” indicate
quadrants Q1, Q2, Q3, and Q4, respectively, as shown in Figure 1 We
observe a strong polarization downtown-suburb and observe that the districts
in quadrants Q3 and Q4 (indicated in blue) can be understood as regions of
transition between downtown (that tends to present positive values for the
social inclusion/exclusion index) and the two great suburban areas of Sao
Paulo (South zone and East zone).
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Figure 16 - Moran’s scatter plot for the social inclusion/exclusion index of the city of
Sé&o Paulo, 1991 census.

Local indicators of spatial association

The global indicators of spatial autocorrelation, such as Moran’s index,
provide a unique number as a measure of spatial association for the whole
data set, which is useful for the characterization of the study area as a whole.
When we deal with a great number of areas, it is very likely that different
types of spatial association and that local maximums of spatial
autocorrelation will appear where the spatial dependence is even stronger.
Thus, many times it is desirable to examine these patterns in more carefully.
To do that one needs to use indicators of spatial association that can be
associated to the different localizations of a spatially distributed variable. The
local indicators produce a specific value for each area, allowing the
identification of groupings. Moran’s local index can be expressed for each
area 7 from the normalized z; values of the attribute as:

n
&) Wil
__Jj=l
- n
2.5
Zj
J=1

The statistical significance of Moran’s local index is computed similarly

I.

1

to the global index case. For each area, we calculate the local index and then
randomly permute the values of the other areas until we obtain a pseudo-
distribution that we can be used to compute the parameters of the
significance. Once the statistical significance of Moran’s local index has been
determined it is useful to generate a map indicating the areas that present
local correlation significantly different from the rest of the data. These
regions can be viewed as non-stationarity “balloons” for they are areas with a
specific spatial dynamics that deserve a detailed analysis. In the case of the
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social inclusion/exclusion index of the city of Sio Paulo (1991 census), this
map (Figure 17) shows clearly the aggregates of poverty and of wealth in the
city. In the East and South zones of Sio Paulo there are critical regions,
where the aggravation of the social conditions result in a significant
degradation in life conditions.

LISA Map
[ not significant
Cr=005
[ p=001

Figure 17 — Spatial autocorrelation indicator for the social inclusion/exclusion index for
the city of Sdo Paulo (1991 Census). Only the values with significance greater than 95%
are shown.

ANALYSIS OF SMALL AREAS

We presented the problem of count aggregation in areas with the final
recommendation of utilizing the best spatial resolution available. In practice,
the use of such strategy requires an additional treatment of the data,
especially in the case of small areas where we calculate the rates over a
reduced population universe. To better understand the problem, consider
Figure 18 that presents a thematic map of the infant mortality in the districts
of Rio de Janeiro, in 1994. In this map, Rio de Janeiro has been divided into
148 districts, and the annual infant mortality rate for each district represents
the number of deaths of children under one year, per 1,000 born alive.

It is shocking to read this map for the first time due to the high rates of
mortality in various districts, with 15 of them presenting a rate higher than
40 deaths per 1,000 children born alive, and 2 cases with rates above 100 per
thousand born alive. A reckless observer might conclude that all of these
districts present a serious social problem. Actually, many of these extreme
values occur in districts with reduced populations, for the city division used
hides tremendous differences among the population at risk, varying from 75
up to 7,500 children per district. For example, consider a region with 15
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children born and no deaths, what would apparently indicate an ideal
situation. If only one child dies this year, the rate increase from 0 per 1,000
to 66 per 1,000!

Figure 18 — Total infant mortality rate per each thousand born alive in Rio de Janeiro,
in 1994.

Such problems are typical of the spatial partionings over political-
administrative divisions, where areas with much different population at risk
are analyzed. Various studies have shown that in political divisions like
districts and municipalities present an inverse relation between area and
population, that is, districts with greater population tend to have smaller
areas, and vice-versa. For that reason, what frequently calls attention in a rate
thematic map, the extreme values are many times the result of an extremely
reduced number of observations, being thus less reliable, or just random
fluctuation.

To smooth such random fluctuation, one considers that the estimated
rate by simple division between the death count and the population — the
observed rate — is just one realization of a non-observed process, and that it is
less reliable the smaller the population is. Thus, we propose to re-estimate a
rate that is closer to the real risk that a population is exposed to. The first
step is to draw a graphic that expresses the rate as a function of the
population at risk, as shown in Figure 19.

Spatial Analysis of Geographic Data 24



pppeeetar L ANRAY Yoo U L AT RE

TAXA DE MORTALIDADE INFANTIL NO RIO DE JANEIRO - 1994

140
.
= 120
£
= .
=3
=
o 100
2
[
2 b
]
o o0
< b
© b +
g -
T &0
E .
(=] .
= ety
% .:‘ L
5 PRI &
[o+; 3 . o 2
LR 2+ RS P : *
- ‘0\ S PO Y +
o b o s - £
0 N

i 1000 2000 3000 4000 5000 8000 7000 2000
Numero de Nascimentos por Bairro

Figure 19 — Rate of infant mortality in Rio de Janeiro, in 1994, as a function of the
number of births per district.

In the case of Rio the mean rate of infant mortality in the city, in 1994,
was 21 deaths per thousand born alive. In the graphic we can observe that
the districts with greater population present rates that are closer to the mean
of the city. As the population at risk decreases, the fluctuation in the
measured rate increases, forming what has been known as “funnel effect”. In
the districts with smaller population, such variation oscillated between 0 to
almost 140 per thousand. It is reasonable to suppose that the rates in the
different regions are autocorrelated, and to take into account the neighbor’s
behavior to estimate a more realistic rate for the regions of smaller
population. Such formulation suggests the use of Bayes estimation
techniques. In such a context, we consider that the “real” rate € associated to
each area is not known, and that we have an observed rate t,=z;/n;, where #;
is the number of people observed while z; is the number of events in the i-th
area.

The idea behind the Bayes estimates is to suppose that the rate 6 is a

random variable, that has a mean g and a variance o7.

It can be
demonstrated that the best Bayes estimates is given by a linear combination

between the observed rate and the mean y;:
éi =wit;+ (1-w, )y (0.7)

the factor w; is given by:

2
e (0.8)
oi+ Mi/n;
The weight w; is as small as smaller is the population under study in the
i-th area and it reflects the degree of confidence with respect to each rate. In

the case of reduced population, the confidence in the observed rate is
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reduced and the rate estimation gets closer to our a priori model (that is, gets
closer to u). Regions with very small populations will have a greater
correction, while large population areas will have little alteration in their
rates. Thus, g will be estimated, when # is small, with a greater weight for
the neighboring mean.

At this point one must observe that the bayesian formulation requires
the means and variances g and o7 for each area. The simpler approach to
treat the estimation of these parameters is the so called empirical Bayes
estimation. This estimate is based on the hypothesis that the distribution of
the random variable 8, is the same for all the areas; this implies that all means
and variances are equal. We can thus estimate ¢ and o; directly from the
data. In this case, we calculate # from the observed rates:

i = & )
n:

Do

And we estimate the variance o7 from the variance of the observed rates
in relation to the estimated mean:

2 Zni(ti_ /2)2 3

o =
2.

The regions will have its rates re-estimated by applying a weighted mean

(0.10)

3>

between the measured value and the global mean rate, where the weight of
the mean will be proportionally inverse to the population of the region.
When we apply this correction to the infant mortality rate of Rio de Janeiro,
we observe that there is a significant reduction in the extreme values. For
example, the Cidade Universitdria (Fundao Island), where 13 children were
born in 1994, presented an apparent rate of 76 per thousand born alive and a
corrected rate of 36 per thousand. Quarters with small population in the risk
group presented similar reductions, while the most populated quarters kept
the rates originally measured. The comparison between the primary rate and
the estimated value is presented in Figure 18. In short, extreme care is
needed when elaborating thematic maps, especially in cases where we present
rates measured over small populations.
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Figure 20 — Comparison between the observed infant mortality rate and the estimated rate
using empirical Bayes method.

The empirical Bayes estimation can be generalized to include spatial
effects. In such case, the idea is to make the Bayes estimation locally,
converging to the direction of a local mean and not toa global mean. It is
sufficient to apply the described method for each area considering its
neighborhood as the “region”. This is equivalent to assuming that the rates of
the neighborhood of area i have common mean g and variance o7. In this
case, we are talking about a local empirical Bayes estimate. Next, we will
present the detection of Hansen’s disease in Recife (Figure 20) where we
have used this local method to estimate the rate of the disease in the city
quarters. Through the “corrected” map it was possible to indicate the priority
quarters for the epidemiologic surveillance to act due to the high values they
presented, even after the smoothing of the indicator.

Coef. Detecgdo 93-9 Alisamento Bayesian
3 Empirico

. 1107- 253
228463 [1253- 435
£-4 [ 1435- 583
463-879 I 583 - 8.43
I 8.79- 144.33 I 843 - 1359

Figure 20 — Mean rates of detection of Hansen’s disease among children under-15,
1993-1997 period, per quarter in Recife, with rates estimated through Bayesian smoothing.
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As shown above, the empirical Bayes estimate is based on the hypothesis
that the distribution of the random variable []; is the same for all the areas
and that the mean [J; and variance []? for each area are equal. We must bear
in mind that this hypothesis is not always realistic, for in social-economic
statistics (as in the case of the discussed health data) the characteristics of the
studied population are very heterogeneous. This way, in many cases it is
desirable to make the hypothesis that each area has its own pattern (and the
[0; and [J7 are distinct); and that implies in estimating the joint distribution
Z={Z,, ..., Z,} of the random variables.

At first sight the estimate of the joint distribution may seem impossible,
since we only have for analysis a sample of each random variable, that is, we
only know the value collected in each unit of area. Nevertheless, the full
Bayes estimates made it possible to solve the problem, through the utilization
of simulation techniques based on MCMC — Markov Chain Monte Carlo —
for the inference of the parameters of interest. Due to the complexity of the
formulation, this book does not describe the Bayes estimates based on
MCMC. The reader should refer to the bibliography in the end of the
tutorial for more details.

REGRESSION MODELS

One of the most common studies with areal data lies in the use of
regression models. A regression model is a statistical tool that utilizes the
existing relationship between two or more variables in a way that one of
them may be described or its value estimated from the others. In spatial data,
when spatial autocorrelation is present, the estimates of the model must
incorporate this spatial structure, since the dependence between each
observation alters the explanatory power of the model. The significance of
the parameters is usually overestimated, and the existence of large scale
variations can even motivate the presence of spurious associations.

In this book, we won’t present a detailed description of the traditional
regression models, for they are available in various books, but we will only
present a short description, necessary to the understanding of the spatial
regression models. The general objective of a linear regression analysis is to
quantify the linear relationship between a dependent variable and a set of
independent variables, as expressed in the matrix equation:

Y =Xf+¢, £ ~N(0,0%) ou (11)
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Yl 1 Xu Xlk—l 130 &
Y, 1 X, Xy 181 &
= + (12)
_Yn_ _1 X, - Xnk—l__:Bk—l_ L€ ]

where Y is the dependent variable, composed by a (# x 1) vector of
observations taken in each of the # areas, X is a (# x k) matrix with k-1
independent variables also taken in the n areas, B is a vector (k x 1) with the
regression coefficients, and € is a vector (# x 1) of random errors, or
residuals.

Typically, when we make a regression analysis, we try to reach two
objectives: (a) find a good adjustment between the values predicted by the
model and the observed values of the dependent variable; (b) find which
independent variables contribute in a significative way to this linear
relationship. To achieve that the standard hypothesis is that the observations
are not correlated, and consequently that the residuals & of the model are
also independent and uncorrelated with the dependent variable, have a
constant variance, and present a normal distribution with zero mean.

However, in the case of spatial data, where spatial dependence is
present, it is very unlikely that the standard hypothesis of uncorrelated
observations is true. In the most common case, the residuals keep presenting
the spatial correlation present in the data, and that could show up as
systematic regional differences in the model relations, or even by a
continuous spatial trend.

The investigation of the regression residuals in the search of signs of a
spatial structure is the first step in a spatial regression. The usual graphical
analysis tools and the residual mapping can provide the first indications that
the observed values are more correlated than would be expected under a
condition of independence. In this case, using the spatial correlation tests —
Moran and Geary — on the regression residuals warn of its presence. If the
autocorrelation exists we must specify a model that takes into consideration
the interference caused by it.

In the rest of this section, we present various types of regression models
that take into account the spatial effects, starting with the spatial structure in
a global way (as the only parameter) until models that vary continuously in
space.
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Models with Global Spatial Effects

The explicit inclusion of spatial effects in regression models can be done
in different ways. The simplest class of spatial regression models, called
global spatial effects models, assume that it is possible to capture the structure
of the spatial autocorrelation in one parameter only, that is added to the
traditional regression model. In this case, we have two alternatives to treat
the global autocorrelation in a regression model. First, the ignored spatial
autocorrelation is attributed to the dependent variable Y. This approach is
denominated simultaneous autoregressive model (SAR) or spatial lag model,
since the spatial dependence is taken into account by the addition to the
regression model of a new term in the form of a spatial relation for the
dependent variable. Formally this is expressed as:

Y =pWY + Xf + €, (13)

Where W is the spatial proximity matrix, and the product WY expresses the
spatial dependence in Y and p is the autoregressive spatial coefficient. The
null hypothesis of the nonexistence of autocorrelation is that p = 0. The
basic idea with this model is to incorporate the spatial autocorrelation as a
component of the model. In terms of individual components, this model can
be expressed as:

yi:p ZWUyJ + Z)Cl- ﬁi+8i (14)
j i=1

The second type of spatial regression model with global parameters
considers that the spatial effects are a noise, or perturbation, that is, a factor
that needs to be removed. In this case, the effects of spatial autocorrelation
are associated to the error term € and the model can be expressed as:

Y=Xp+¢e ¢e=AW+¢&, (15)

Where We is the error component with spatial effects, 4 is the autoregressive
coefficient and & is the uncorrelated error component with constant variance.
The null hypothesis for the nonexistence of autocorrelation is that 4 = 0,
that is, the error term is spatially uncorrelated. Such model is also known as
spatial error model or conditional autoregressive model — CAR.

From equation 15 we can show that the spatial error model can also be
expressed as:

Y- AWY = XB — AWXB + & (16)

Or even as:

(T-AW)Y=(I - AIW)XB + & (17)
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what can be seen as a non-spatial regression in the “filtered” variables.
Y =(I-AW)Y , X = U -W)X (18)

In practice, the distinction between both types of spatial regression
models with global parameters is difficult for, despite the difference in their
motivation, they are very close in formal ways. These models are included in
advanced spatial statistics environment, like the software SpaceSat™, S-Plus
and R, this one in the public domain. In the references in the end of this
tutorial, the reader will find indications about how such models can be

™

estimated and about the hypothesis about its behavior.

The spatial regression models with global effects are based on the
principle that the underlying spatial process on the analyzed data is
stationary. This means that the spatial autocorrelation patterns of the data
can be captured in on parameter only. In practice, for census data sets of
medium to large scale, the nature of the spatial processes is such that
different patterns of spatial association can be present. This hypothesis, that
can be verified, for example, by the local indicators of spatial
autocorrelation, is in the origin of the models whose parameters vary in
space, and are discussed as follows.

Regression Models with Local Spatial Effects
(a) Discrete Choice — Regression Models with Spatial Regimes

When the spatial process is non-stationary the coefficients of regression
need to reflect the spatial heterogeneity. To do that we have two alternatives:
(a) to model the spatial trend in a continuous way, with parameters that vary
in space; (b) to model the spatial variation in a discrete way, by dividing the
space in stationary sub-regions, called spatial regimes.

The idea of spatial regimes is to divide the region of study in sub-
regions, each one with its own spatial pattern, and to make separate
regressions, one for each area. The observations are classified in two or more
subsets, starting from an indicated variable, that is:

Y1:X1ﬁ1+81,il’ld:1 (19)
Y2 =X2,32+€2,ind=2 (20)

Although each regime has its own coefficient values, these values are
estimated together, that is, the set of all the observations is used in the
regression. For the determination of the spatial regimes, the techniques of
exploratory analysis are very useful, especially the Moran scatter plot and the
local indicators of spatial autocorrelation.

In practice, for the typical socioeconomic data of Brazilian cities, the
model of spatial regimes tend to present better results than the models of
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simple regression or spatial regression with global effects. This occurs due to
the strong social inequalities in Brazil, that provoke sharp discontinuities in
the studied phenomena, as in the case of the cut off between the slums and
the rich area that frequently occur in Brazilian big cities.

Regression Models with Local Spatial Effects.
(b) Regression Models with Continuous Spatial Effects

This class of models try to model non-stationary phenomena. Differently
from the spatial regimes model, the spatial effects are modeled in a
continuous way, with two hypothesis: (a) the existence of a smooth large-
scale variation, without significant local effects or (b) the existence of
continuous local variations, without a strong global trend. The first case
corresponds to the trend surfaces. The trends surface model considers a
spatial process where the value of the variable is a polynomial function of its
position in space. The multiple regression model using vectorial notation is:

Y(s)=X(s)B+e&(s) (21)
Where, Y(s) = random variable representing the process at point s,
X(s) B > trend (that is, the mean value u(s)),
&(s) & random error with zero mean and variance o

Vector x(s) consists of p functions of the spatial coordinates (s;, s,), of
the sampled point s. For a surface of linear trend it is only (1, s, s,), for a
quadratic one it is (1, s;, s, ;% ;% $1.55), and so on. Bis the vector (p+1) of
parameters to be adjusted. The basic presupposition of such model assumes
that the errors have constant variance and are independent in each place,
consequently, the covariance is zero: there are no second-order effects
present in the process. In this context a model adjustment using ordinary
least square is done. The trend surfaces model is useful mainly as a first
approximation of the phenomena for, in practice, the cases where the spatial
variation can be expressed in this way are limited. However, the residuals of
these models are much informative about the nature of the local variations.

In the case of model of continuous local variations the idea is to adjust a
regression model at each point observed, weighting all the other observations
as a function of the distance from this point. This way, as many adjustments
will be made as there are observations and the result will be a set of
parameters, being that each point considered will have its own coefficients of
adjustment. These parameters can be presented visually in order to identify
how they behave spatially and the relationships between the variables. This
technique is called geographically weighted regression (GWR). To apply the
model GWR, the standard regression model is rewritten as:
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Y(s)=B()X +e, (22)

Where Y(s) is the random variable representing the process at point s, and
B(s) indicates that the parameters estimated at point s. To estimate the
parameters of this model, the standard least squares solution for the non-
spatial case that is given by:

F=X"X)"X"Y (23)
is generalized using a method for the local adjustment:
B()=(X"W(s)X)" X "W(s)Y (24)

The local adjustment is done in way to guarantee a greater influence of
the closer points, in a way similar to the kernel density estimators. An
example is the use of a Gaussian function of the type:

w;i (s, T)z%mexp _ Y (25)

where 7 represents the considered influence radius, and d; is the distance
between the considered position and the j-b point. One can run hypothesis
tests to verify whether the spatial variations have statistical significance or are
random. For more details about the GWR model, the reader should refer to
the bibliography at the end of the tutorial.

Diagnostics of Spatial Effects Models

The graphical analysis of the residuals is the first step to evaluate the
quality of the regression adjustment. Mapping the residuals is an important
stage in the diagnostic of the model, searching for signs of rupture in the
presuppositions of independence. A high concentration of positive (or
negative) residuals in a part of the map is a good indication for the presence
of spatial autocorrelation. For a quantitative test, the most common is to
utilize Moran’s I index over the residuals.

Since the estimators and the traditional regression diagnosis do not take
into account the spatial effects, the inferences, like for example the
indications of quality of the adjustment based in R* (determination
coefficient), will be incorrect. These consequences are similar to the ones that
happen when a significant independent variable is omitted from the
regression model. When one wishes to compare an adjustment obtained from
a standard regression model with an adjustment obtained from one of the
models whose specifications take into account the spatial autocorrelation, a
measure like R2 is not reliable anymore.

The most usual method for the selection of regression models is based
upon the values of maximum likelihood of the different models, weighting
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the difference in the number of parameters estimated. In models with a
dependence structure — spatial or temporal — one utilizes the information
criteria where the evaluation of the adjustment is penalized by a function of
the number of parameters. It’s worth observing that it is necessary to take
into consideration the number of independent parameters when including
spatial functions in the models. For each new variable in a regression model a
parameter is added. Usually the comparison of the models is done using the
logarithm of the maximum likelihood, which has the best adjustment for the
observed data. Akaike’s information criteria (AIC) is expressed as:

AIC=—12% LIK +2k (26)

where LIK is the maximized likelihood log and k is the number of regression
coefficients. According to this criteria, the best model is the one that has the
smaller AIC value. Various other information criteria are available, most of
them variations of AIC, with changes in the form of penalization of
parameters or observations.

Hlustrative example

As an illustrative example of the spatial regression techniques, we
studied the relationship between income and longevity in the city of Sio
Paulo, with data from the 1991 census. We’re talking about two or three
variables that compose the United Nation’s HDI (Human Development
Indicator). The dependent variable to be explained is named PERIDOSO
(percentage of people older than 70 per district of Sio Paulo) and the
independent variable is indicated by PERREN20 (percentage of family heads
with income above 20 minimum wages a month). The spatial distribution of
these variables is shown in Figure 21.
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Figure 21 — Percentage of older (left) and family heads with income higher than 20
minimum wages a month (right) for the districts of S&o Paulo (1991).

Three regression models were compared: the non-spatial standard
model, the spatial lag model, and the spatial regimes model. In the case of
the spatial regimes three city regions were considered (downtown, suburbs,
and the transition downtown-suburbs). The standard model is expressed as:

PERIDOSO = 3, + B, PERREN20 + ¢ 0.27)

Using the neighborhood matrix W of the districts, the spatial lag model
can be expressed as:

PERIDOSO = B, + B, PERREN20 + pW(PERIDOSO) + & (0. 28)

Using the neighborhood matrix W of the districts, the spatial lag model
can be expressed as:

PERIDOSO 1 = B!, + B!, PERREN20 1, reg=1 (29)
PERIDOSO 2 = B2, + B% PERREN20 2, reg=2 (30)
PERIDOSO 3 = B3, + B°, PERREN20 3, reg=3 31)

The results of these regression models are presented in Table 3. In the
traditional regression model, the relationship between income and longevity
in Sao Paulo is very reduced, what gives support to the HDI idea that they
are complementary dimensions of human development. However, when
spatial effects are taken into account, we verify that there is a real
dependence between both factors. In Figure 22, we present the spatial
distribution of the regression residuals for the least squares and spatial lag
models. A visual analysis of the residuals for the traditional regression models
indicate a prevalence of positive residuals in downtown and negative
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residuals in the suburbs, especially in the East and South zones. The
numerical results confirm this analysis, for Moran’s index for the residuals is
highly significant. Concerning the global performance, the R* measures are
limited indicators and should be dealt with care, and we should prefer the
measures based on likelihood (LIK, AIC). In such case, the spatial lag model
had a much better performance than the standard model. This effect is
expected, because there is a significant Moran’s index in the residuals, which
is captured by the spatial effect coefficient (o).

The spatial regimes chosen for Sio Paulo are shown in Figure 23,
together with the regression residuals considering these regimes. From the
visual analysis of the residuals, we verify the non-existence of a strong spatial
trend, which is evidenced by their low Moran’s index, as indicated in Table
3. In general, the spatial regime model presented a better performance, by
any criteria (R?, LIK, AIC). The result reflects the strong polarization
downtown-suburbs in the city of Sao Paulo, and that is compatible with
studies that show the results of urban violence in the mortality rates,
especially among men aged from 15 to 25.

Table 3 -Results of the Regression for Longevity and Income in S&o Paulo, 1991.

Least Squares Spatial Lag | Spatial Regimes
Adjusted R* 0,280 0,586 0,80
Likelihood log -187,92 -150,02 -124,04
AIC 379,84 306,51 260,09
Moran’s index for residuals 0,620 - 0,020

[6.1520 = -1.4427]

[-29161 ~-0.8358]
S a2~ 03 1 5408358 ~ 0.48286)
|

>34 ~ 0.4378] B > 04228 ~ 01633

. l>0s3m- 05213 B > 01633~ 01558

| [l >05213~1.8158) B 00558 ~ 1.1548)
'.:1.8158”1@] 11548~ 35039)
.

Figure 22 —Least squares regression residuals (left) and spatial lag regression
residuals (right).
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Figure 23 — Spatial regimes for the districts of Sao Paulo (left) and spatial regimes
regression residuals (right).

CONTINUOUS MODEL ESTIMATION FROM AREAL DATA

The previous sections presented techniques for spatial analysis of areal
data based on the model of discrete spatial variation , where each area is
modeled by respecting its boundaries, surroundings and neighborhood. In
this section we consider the continuous space variation model, that assumes a
stochastic process {Z(x), x € A, A c R*}, whose values can be known in every
point of the study area. The idea of continuous models for socioeconomic
data stems from the fact that the censitary research many times impose area
limits due to exclusively operational reasons, that doesn’t have any relation
to the modeled phenomena. This fact leads to the idea of dissolving the area
limits in continuous surfaces, as a way of better modeling the real continuity
of, for example, censitary sectors into densely populated urban areas.

In the case of surface estimators, the main options are the use of non-
parametric techniques and the use of geostatistical interpolators.

Non-parametric intensity estimator

Similarly to the surfaces case, we can use the intensity estimator (kernel
estimator) to provide us a first approximation of the spatial distribution of
the phenomena or variable. In this case, when the observed values represent
an “average” measurement like the mortality rate or percapita income, we
can utilize an estimator that would allow us to calculate the attribute value
per unit of area. For every position (x;¥) which value we want to estimate,
the intensity estimator will be computed from the values {z;, 2, .., 2.}
contained within a radius of length t, according to the equation:
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In the equation above, function k() is a non-parametric interpolator,
that could be, for example, a Gaussian kernel, where the reader may find a
more detailed discussion about non-parametric intensity estimators. An
example of the intensity estimator for rates can be seen in Figure 22, where
data for mortality due to homicide are presented for the state of Rio de
Janeiro, for the years 1990-1992 interpolated with the intensity estimator,
which gives us an idea of the spatial distribution of the variable under study.
In Figure 24(a) a map is presented with the values of the indicators of the
mortality rate, grouped by municipality. In Figure 24(b), we present the
results of the intensity estimator, that gives us a better idea of the spatial
distribution of the studied variable.

When the observations in the areas represent counts, like the ones obtained
in the census, the kernel estimator presented above is not appropriate. An
“average” value of an attribute like “number of poor households” would
make no sense, and one must think in terms of “number of poor households
per unit of area”. In this case, we can use the numerator of equation (32),
divided by the area of the circle defined by search radius:

Zk( zj . dy <7 (33)
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Figure 24 — (a) Mortality due to homicide in RJ (190-1992). Thematic map with values
per municipality. (b) Surface obtained with non-parametric intensity estimator.

The use of geostatistical interpolators

The otraditional motivation f geostatistics is associated with physical
data like mineral content or pollution rate. In the case of ordinary kriging,
the underlying hypothesis is that the data present a Gaussian distribution, and
in such case the optimal properties of the estimators (like the minimum
variance of the result) are guaranteed. In the case of socioeconomic or public
health data, the hypothesis of normality of the data is seldom realistic, being
more common the assumption that the distribution is Poisson, for we are
dealing with event counts. However, the optimal properties of the kriging
estimator and its wide availability in different geographic information
systems make it important to investigate its usefulness for socioeconomic
data. In this case, the first step is to investigate how close to the normal
distribution the data is; if necessary, appropriate transformations (like the
logarithmic transformation) can be applied to “symmetrize” the empirical
distribution and thus bring it closer to the normal one. To consider a
concrete situation, Figure 25 presents the distribution of the homicide rate
per 100 thousand inhabitants, for 96 districts of Sdo Paulo in 1996, follwed
by the normal probability graphic that indicates how much these data are
close to a Gaussian distribution. From the analysis of both data, and
considering that the mean (43,6) is sufficiently close to the median (39,3),
and since the Shapiro-Wilk normality test indicates a value of 0,9653 (p-
value of 0,012), the hypothesis of normality cannot be rejected and allow us
to apply a kriging interpolator.
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Figure 25 — Homicide rate per 100 thousand inhabitants for S&o Paulo in 1996. Right:
relative frequency, left: normal probability graphic.

Based on these hypothesis, and with the objective of understanding the
space-time patterns in Sio Paulo, we used ordinary kriging to produce
surfaces of homicide rate for 96 districts of Sdo Paulo for the years 1996 and
1999. To achieve it, a set of points obtained by the association of the
parameter value for each area to its centroid was taken as a sample, used to
compute a variogram that modeled the structure of spatial autocorrelation.
The surface obtained is presented in Figure 26 and shows a significant drop
in the areas with the lower homicide rates (less than 30 deaths by 100,000
people) in 1999 compared to 1996. Since the areas of lower homicide rate
correspond to the wealthier areas of the city, the result shows a spatial spread
of crime, with the violence progressively occupying the whole city.

Homocide rate
(by 100,0_00)

B - 00
B - f0-50
+ 50-80
L BO-70
L 70-800
+ BO-90
~ 80-100

Figure 26 — Surface estimation for the homicide rate in Sdo Paulo in 1996 (left) and 1999
(right).
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FINAL COMMENTS

This tutorial showed that the spatial analysis techniques can considerably
increase our capability of understanding the spatial patterns associated to
areal data, especially when dealing with social indicators, that present global
and local spatial autocorrelation. Exploratory techniques like Moran’s
indicators and Moran’s scatter plots are very useful to show the spatial
clusters and to indicate priority areas in terms of public policies. Bayes
estimation methods for rates allow the correction of the effects associated to
small populations. Regression models allow the establishment of the
relationships between the variables, taking into account the spatial effects; in
this case, the explicative power of the models can benefit from significant
gains. The generation of surfaces is an efficient way of visually apprehending
the spatial patterns. In short, researchers of social-economic data can
substantially benefit from the techniques of this tutorial.
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