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Introduction 

Understanding the spatial distribution of data from phenomena that occur 

in space constitute today a great challenge to the elucidation of central questions 

in many areas of knowledge, be it in health, in environment, in geology, in 

agronomy, among many others. Such studies are becoming more and more 

common, due to the availability of low cost Geographic Information System (GIS) 

with user-friendly interfaces. These systems allow the spatial visualization of 

variables such as individual populations, quality of life indexes or company sales 

in a region using maps. To achieve that it is enough to have a database and a 

geographic base (like a map of the municipalities), and the GIS is capable of 

presenting a colored map that allows the visualization of the spatial pattern of the 

phenomenon. 

Besides the visual perception of the spatial distribution of the 

phenomenon, it is very useful to translate the existing patterns into objective and 

measurable considerations, like in the following cases: 
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• Epidemiologists collect data about the occurrence of diseases. Does the 

distribution of cases of a disease form a pattern in space?  Is there any 

association with any source of pollution? Is there any evidence of 

contagion? Did it vary with time? 

• We want to investigate if there is any spatial concentration in the 

distribution of theft. Are thefts that occur in certain areas correlated to 

socio-economic characteristics of these areas? 

• Geologists desire to estimate, from some samples, the extension of a 

mineral deposit in a region. Can those samples be used to estimate the 

mineral distribution in that region? 

• We want to analyze a region for agricultural zoning purposes. How to 

choose the independent variables – soil, vegetation or geomorphology – 

and determine what the contribution of each one of them is to define 

where each type of crop is more adequate? 

All of these problems are part of spatial analysis of geographical data. 

The emphasis of Spatial Analysis is to measure properties and relationships, 

taking into account the spatial localization of the phenomenon under study in a 

direct way. That is, the central idea is to incorporate space into the analysis to be 

made. This book presents a set of tools that try to address these issues. It is 

intended to help those interested to study, explore and model processes that 

express themselves through a distribution in space, here called geographic 

phenomena. 

A pioneer example, where the space category was intuitively incorporated 

to the analyses performed took place in the 19th century carried out by John 

Snow. In 1854, one the many cholera epidemics was taking place in London, 

brought from the Indies. At that time, nobody knew much about the causes of the 

disease. Two scientific schools tried to explain it: one relating it to miasmas 

concentrated in the lower and swampy regions of the city and another to the 

ingestion of contaminated water. The map (Figure 1) presents the location of 
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deaths due to cholera and the water pumps that supplied the city, allowing the 

clear identification of one of the locations, in Broad Street, as the epicenter of the 

epidemics. Later studies confirmed this hypothesis, corroborated by other 

information like the localization of the water pump down river from the city, in a 

place where there was a maximum concentration of waste, including excrements 

from choleric patients. This was one of the first examples of spatial analysis 

where the spatial relationship of the data significantly contributed to the 

advancement in the comprehension of a phenomenon. 

 

Figure 1 – London Map showing deaths from cholera identified by dots and water 

pumps represented by crosses. 

Data types in spatial analysis 

The most used taxonomy to characterize the problems of spatial analysis 

consider three types of data: 

• Events or point patterns – phenomena expressed through occurrences 

identified as points in space, denominated point processes. Some examples 

are: crime spots, disease occurrences, and the localization of vegetal 

species. 
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• Continuous surfaces – estimated from a set of field samples that can be 

regularly or irregularly distributed. Usually, this type of data results from 

natural resources survey, which includes geological, topographical, 

ecological, phitogeographic, and pedological maps. 

• Areas with Counts and Aggregated Rates – means data associated to 

population surveys, like census and health statistics, and that are originally 

referred to individuals situated in specific points in space. For 

confidentiality reasons these data are aggregated in analysis units, usually 

delimited by closed polygons (census tracts, postal addressing zones, 

municipalities). 

From the data types above, it can be verified that the problems of spatial 

analysis deal with environmental and socioeconomic data. In both cases, the 

spatial analysis is composed by a set of chained procedure that aims at choosing 

of an inferential model that explicitly considers the spatial relationships present in 

the phenomenon. In general, the modeling process is preceded by a phase of 

exploratory analysis, associated to the visual presentation of the data in the form 

of graphs and maps and the identification of spatial dependency patterns in the 

phenomenon under study. 

In the case of point pattern analysis the object of interest is the very spatial 

location of the events under study. Similarly to the situation analyzed by Snow, 

the objective is to study the spatial distribution of these points, testing hypothesis 

about the observed pattern: if it is random or, on the contrary, if it presents itself 

in agglomerates or is regularly distributed. It is also the matter of studies aiming at 

estimating the risk of diseases around nuclear plants. Another case is to establish a 

relationship between the occurrence of events with the characteristics of the 

individual, incorporating possible environmental factors about which there is no 

data available. For example, would the mortality by tuberculosis, even 

considering the known risk factors, vary with the address of the patient? As an 

example, Figure 2 illustrates the application of point pattern analysis for the case 

of mortality by external causes in the city of Porto Alegre, with 1996 data, carried 
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out by Simone Santos and Christovam Barcellos, from FIOCRUZ. The homicide 

locations (red), traffic accidents (yellow) and suicides (blue) is shown in Figure 2 

(left). On the right, a surface for the estimated intensity is presented, that could be 

thought as the “temperature of violence”. The interpolated surface shows a pattern 

of point distribution with a strong concentration in the downtown of the city, 

decreasing in the direction of the more remote quarters. 

 

Figure 2 – Distribution of cases of mortality by external causes in Porto Alegre in 

1996 and the intensity estimator. 

For surface analysis, the objective is to reconstruct the surface from which 

the samples were removed and measured. For example, consider the distribution 

of profiles and soil samples, for the state of Santa Catarina and surrounding areas, 

and the spatial distribution map of the saturation by bases variable, produced by 

Simone Bönisch, from INPE, and presented in Figure 1-3. 

  *  Perfis
  *  Amostras

55,437 (%)

8,250

�

 

Figure 3 – Profiles and soil samples distribution in Santa Catarina (left) and 

estimated continuous distribution of the saturation by bases variable (right). 
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How did we build this map? The highlighted crosses indicate the 

localization of the points of soil sampling; from these measures a spatial 

dependency model was estimated allowing the interpolation of the surface 

presented in the map. The inferential model has the objective of quantifying the 

spatial dependence among the sample values. This model utilizes the techniques 

of geostatistics, whose central hypothesis is the concept of stationarity (discussed 

later in this chapter) that supposes a homogeneous behavior on the structure of 

spatial correlation in the region of study. Since environmental data are the result 

of natural phenomena of medium and long duration (like the geological 

processes), the stationarity hypothesis is derived from the relative stability of 

these processes; in practice, this implies that stationarity is present in a great 

number of situations. It must be observed that stationarity is a non-restrictive 

work hypothesis in the approach of non-stationary problems. Methods like 

universal kriging, fai-k, external derivation, co-kriging, and disjunctive kriging 

are meant for the treatment of non-stationary phenomena. 

In the case of the areal analysis, most of the data are drawn from 

population survey like census, health statistics and real estate cadastre. These 

areas are usually delimited by closed polygons where supposedly there is internal 

homogeneity, that is, important changes only occur in the limits. Clearly, this is a 

premise that is not always true, given that frequently the survey units are defined 

by operational (census tracts) or political (municipalities) criteria and there is no 

guarantee that the distribution of the event is homogeneous within these units. In 

countries with great social contrasts like Brazil, it is frequent that different social 

groups be aggregated in one same region of survey – slums and noble areas – 

resulting in calculated indicators that represent the mean between different 

populations. In many regions the sampling units present important differences in 

area and population. In this case, both the presentation in choropleth maps and the 

simple calculation of population indicators can lead to distortions in the indicators 

obtained and it will be necessary to use distribution adjustment techniques.  
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As an example of data aggregated by area consider Figure 4 (left), that 

presents the spatial distribution of the social inclusion/exclusion index of São 

Paulo, produced by the team leaded by Prof. Aldaíza Sposati (PUC/SP). The 

indicators of social inclusion/exclusion were generated from survey data on 6 

districts of São Paulo, based on the 1991 Census. From this map it was possible to 

extract a cluster of social inclusion/exclusion, shown in Figure 4 (right) that 

indicates the extremes of social inclusion and exclusion in the city.  

 

Figure 4 – Social Inclusion/Exclusion Map of São Paulo (1991) and social 

exclusion clusters (South and East Zones) and social inclusion (downtown). 

 

1.1 Computational representation of geographic data 

The term Geographic Information System (GIS) is applied to systems that 

perform the computational treatment of geographic data and that store the 

geometry and the attributes of data that are georeferenced, that is, situated on the 

earth surface and represented in a cartographic projection. In general we can say 

that a GIS has the following components, as shown in Figure 5: 

• User interface; 

• Data input and integration; 

• Graph and image processing functions; 
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• Visualization and plotting; 

• Data storage and retrieval (organized in the form of a geographic 

database). 

These components relate in a hierarchical way. The man-machine 

interface defines how the system is operated and controlled. In an intermediate 

level a GIS must have spatial data processing mechanisms (input, edition, 

analysis, visualization, and output). Internal to the system, a geographic database 

stores and retrieves spatial data. Every system, as a function of its objectives and 

needs, implements these components in a distinctive way. However, all the 

subsystems mentioned are present in a GIS. 

Interface

Spatial Analysis
and Query

Data Input and
Integratioon

Visualizing
and Plot

Spatial Data
Management

Geographic
Database

 

Figure 5 – The architecture of Geographic Information Systems. 

The most used geographic database organization is the geo-relational 

model (or dual architecture), that utilizes a relational database management 

system (DBMS) like DBASE or ACCESS, to store in its tables the attributes of 

the geographic objects, and separate graphic files to store the geometric 

representation of these objects. The main advantage of the geo-relational model is 

to be able to use the relational DBMS available in the marketplace. From a user 

standpoint this organization allows the conventional applications, designed and 

developed within a relational DBMS environment, to share the attributes of the 

geographic objects. However, since the relational DBMS does not know the 
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external graphic structure, there is a serious risk of introducing inconsistencies in 

the geographic database. Imagine, for example, that a user of a strictly 

alphanumeric application is able to remove an alphanumeric register, which is part 

of a set of attributes of a certain geographic entity. In this case, this geographic 

entity has no longer its attributes, becoming inconsistent. Therefore, the access to 

the alphanumeric attributes of geographic data can only be done in a careful way, 

within rigid controls that must be implemented by the application, since the geo-

relational model does not offer any features to automatically guarantee the data 

integrity. 

The geometric representations used include the following options: 

• 2D Points: A 2D point is an ordered pair (x,y) of spatial coordinates. A 

point indicates the place of occurrence of an event, like in the case of 

mortality by external causes, shown in Figure 2. 

• Polygons: A polygon is a set of ordered pairs {(x,y)} of spatial 

coordinates, in such a way that the last point is identical to the first thus 

forming a closed region in the plane. In the simplest situation, each 

polygon delimits an individual object (like in the case of the districts of 

São Paulo in Figure 4); in the most general case, an individual region of 

interest can be delimited by several polygons. 

• Samples: consist of ordered pairs {(x,y,z)} where the (x,y) pairs indicate the 

geographic coordinates and z indicates the value of the studied 

phenomenon for that localization. Usually the samples are associated to 

field surveys, such as geophysical, geochemical, and oceanographic data. 

The concept of a sample can be generalized to the case of multiple 

measurements on the same locality. 

• Regular Grid: is a matrix where each element is associated to a numeric 

value. This matrix is associated to a region on the earth surface. Starting 

from an initial coordinate, usually referred to the lower left corner of the 
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matrix, and with regular spacing in both the horizontal and vertical 

directions. 

• Image: is a matrix where each element is associated to an integer value 

(usually in the 0 to 255 range), used for visualization. This matrix is used 

for the graphic presentation of a regular grid. The numeric values in the 

grid are scaled to fit within the presentation range of the image; the bigger 

values are shown in lighter gray colors, and the lower ones in darker gray 

tones. Most of the GISs offer the capability of presenting a regular grid in 

the form of an image (in black and white or in colors), with a conversion 

that can be automatic or controlled by the user. Figure 1-3 (right) shows an 

image of the distribution of the saturation by bases in the state of Santa 

Catarina. 

The geometries associated to points, samples and polygons are presented 

in Figure 6 while the regular grid is shown in Figure 7. Usually, the geographic 

reference of the data is kept in the coordinates of the data structure, that is 

associated to a planar cartographic projection, or to latitude (Y coordinate) and 

longitude (X coordinate) values. 

 

Figure 6 Geometries: 2DPoint, Sample and Polygon. 
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Figure 7 Geometric representation of the Regular Grid 

In the geo-relational model, the descriptive attributes of each object are 

organized in the form of a table, where the lines correspond to the data and the 

column names correspond to the attribute names. Each line in the table 

corresponds to the values associated to a geographic object; to each geographic 

object a unique identifier or label is associated, and that label is used to make a 

logical connection between its attributes and its geometric representation. 

Concerning the three basic data types used in spatial data analysis, the 

areas are stored in a GIS with a dual strategy in the form presented in Figure 8. 

Each area, that could be a census tract, health district or municipality, is 

graphically represented by a closed polygon and its attributes are stored in a table 

in a relational DBMS. Figure 1-8 shows the farm of a forestry enterprise, divided 

in tracts, for cultivation purposes. Each tract receives an identifier that is 

associated at the same time to the polygon that delimits it and to the line in the 

table that contain its attributes. In the example the link is done through the 

registers in the field “TALHÃO” (tract). The same type of logical relationship is 

done in all the other cases such as: residents in a lot, the lots in a block, the blocks 

in a quarter, the quarters in a city; the hydrants or pay phones along an avenue; 

service stations and restaurants alongside a road. 
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Figure 8 – Dual strategy for geographic database. 

In the case of events, these can also be associated to a relational DBMS, 

for example, recording the address where a homicide occurred and its motive. The 

same principle can be applied to the case of areas: each event is associated to an 

identifier that works as the link between the geographic coordinates file and the 

table in the database. 

For the surfaces the most common situation is dealing only with graphic 

files, without the storage of results in a relational DBMS. In this case, the most 

usual situation is that the input data are stored as samples, added to the polygon of 

the limits of the region under study. The estimation process produces a regular 

grid describing approximately the phenomenon in the region under study. This 

grid can be transformed into an image for presentation purposes (like in Figure 3). 
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Basic concepts in spatial analysis 

Spatial Dependency 

Spatial dependency is a key concept on understanding and analyzing a 

spatial phenomena.. Such notion stems from what Waldo Tobler calls the first law 

of geography: “everything is related to everything else, but near things are more 

related than distant things.” Or, as Noel Cressie states, “the [spatial] dependency 

is present in every direction and gets weaker the more the dispersion in the data 

localization increases.” Generalizing we can state that most of the occurrences, 

natural or social, present among themselves a relationship that depends on 

distance. What does this principle imply? If we find pollution on a spot in a lake it 

is very probable that places close to this sample spot are also polluted. Or that the 

presence of an adult tree inhibits the development of others, such inhibition 

decreases with distance, and beyond a certain radius other big trees will be found. 

 

Spatial Autocorrelation 

The computational expression of the concept of spatial dependence is the 

spatial autocorrelation. This term comes from the statistical concept of 

correlation, used to measure the relationship between two random variables. The 

preposition “auto” indicates that the measurement of the correlation is done with 

the same random variable, measured in different places in space. We can use 

different indicators to measure the spatial autocorrelation, all of them based on the 

same idea: verifying how the spatial dependency varies by comparing the values 

of a sample and their neighbors’. The autocorrelation indicators are a special case 

of a crossed products statistics like 
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This index expresses the relationship between different random variables 

as a product of two matrixes. Given a certain distance d, a matrix wij provides a 

measure of spatial contiguity between the random variables zi and zj, for example, 
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informing if they are separated by a distance shorter than d. Matrix �ij provides a 

measure of the correlation between these random variables that could be the 

product of these variables, as in the case of Moran’s index for areas, discussed in 

chapter 5 of this book, and that can be expressed as  
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where wij is 1 if the geographic areas associated to zi and zj touch each other, and 0 

otherwise. Another example of indicator is the variogram, discussed in chapter 3, 

where we compute the square of the difference of the values, like in the case of 

the expression that follows 
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where N(d) is the number of samples separated by distance d. 

In both cases the values obtained should be compared with the values that 

would be produced if no spatial relationship existed between the variables. 

Significant values of the spatial autocorrelation indexes are evidences of spatial 

dependency and indicate that the postulate of independence between the samples, 

basis for most of the statistical inference procedures, is invalid and that the 

inferential models for these cases should explicitly take the space into account in 

its formulations. 

 

Statistical Inference for Spatial Data 

An important consequence of spatial dependence is that statistical 

inferences on this type of data won’t be as efficient as in the case of independent 

samples of the same size. In other words, the spatial dependence leads to a loss of 

explanatory power. In general, this reflects on higher variances for the estimates, 

lower levels of significance in hypothesis tests and a worse adjustment for the 

estimated models, compared to data of the same dimension that exhibit 

independence. 
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In most cases the more adequate perspective is to consider that spatial data 

not as a set of independent samples, rather as one realization of a stochastic 

process. Contrary to the usual independent samples vision, where each 

observation carries an independent information, in the case of a stochastic process 

all the observations are used in a combined way to describe the spatial pattern of 

the studied phenomenon. The hypothesis created in this case is that for each point 

u in a region A, continuous in 2ℜ , the values inferred of the attribute z - )(ˆ uz - are 

realizations of a process }),({ AuuZ ∈ . In this case it is necessary to create 

hypothesis about the stability of the stochastic process when assuming, for 

example, that it is stationary and/or isotropic, concepts discussed in what follows. 

 

Stationarity and Isotropy 

The main statistical concepts that define the spatial structure of the data 

relate to the effects of 1st and 2nd order. 1st order effect is the expected value, that 

is, the mean of the process in space. 2nd order effect is the covariance between 

areas si and sj. Stationarity is an important concept in this type of study. A process 

is considered stationary if the effects of 1st and 2nd order are constant, in the whole 

region under study, that is there is no trend. A process is isotropic if, besides being 

stationary, the covariance depends only on the distance between the points and not 

on the direction between them. A stochastic process Z is said to be stationary of 

second order if the expectation of Z(u) is constant in all the region under study A, 

that is, it doesn’t  depend on its position 

muZE =)}({    (4) 

and the spatial covariance structure depends solely on the relative vector between 

points h = u-u’ 

 

C(h)=E{Z(u) · Z(u+h)}-E{Z(u)}E{Z(u+h)}  (5) 
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Given a specific spatial process, the stationarity hypothesis can be 

corroborated by explanatory analysis procedures and descriptive statistics, whose 

calculation should explicitly consider the spatial localization. In spatial covariance 

C|h| the vector h comprises the distance |h| and the direction. The covariance is 

called anisotropic when its structure varies with distance and simultaneously as a 

function of its direction. When the spatial dependence is the same in all directions, 

we have an isotropic phenomenon. The modeling of the spatial covariance 

structure is better detailed in the chapters that follow. For now it’s important to 

emphasize the basic characteristics of a spatial covariance structure in order to 

make the concepts used in this book comprehensible. 

The spatial analysis process 

The spatial analysis is composed by a set of chained procedures whose aim 

is to choose an inferential model that explicitly considers the spatial relationship 

present in the phenomenon. The initial procedures of analysis include the set of 

generic methods of exploratory analysis and the visualization of data, in general 

through maps. These techniques permit the description of the distribution of the 

variables of study, the identification of observations that are outliers not only in 

relation to the type of distribution but also in relation to its neighbors, and to look 

for the existence of patterns in the spatial distribution. Through these procedures it 

is possible to propose hypothesis about the observations, in a way of selecting the 

best inferential model supported by the data. 

The spatial inferential models are usually presented in three great groups: 

continuous variation, discrete variation, and the point processes. The resolution of 

a spatial problem may involve the utilization of one of them or the interaction of 

some or even all of them. The example below illustrates the differences among 

these models, how they can be used and how they interact inside the same process 

where questions, based on real facts, must be responded. 



17/30 

Visceral Leishmaniasis is basically an animal disease but that also affects 

humans. The dogs are the main domestic reservoirs of the urban disease and there 

is no treatment for them. The disease is spread by mosquitoes, that reproduce in 

the soil and in decomposing organic matter, like banana trees and fallen leaves. In 

the last years there were some epidemic outbreaks in Brazilian cities like Belo 

Horizonte, Araçatuba, Cuiabá, Teresina, and Natal. The control of the disease is 

based on the combat against the insect and on the elimination of affected dogs 

inside the disease focus, an area of 200 meters around the human or canine case. 

However, the intensive application of these measures has not resulted in the 

desired results, and the endemic goes on. On the other side, the population, 

although cooperative in a first moment, by the time of the discovery of serious 

human cases, after a few months of survey, refuse the elimination of dog. The 

problem is serious, and yet without a solution. It is necessary to evaluate the 

efficacy of the control strategies in the urban context. Using the spatial analysis 

tools, some investigation may accumulate information to give a response to that 

problem. For example: 

What is the radius of dispersion of the mosquito around its habitat? 

Two models can be used for modeling the dispersion of the Leishmaniasis 

vector which is essential for estimating the radius of dispersion of the mosquito 

that will define the area of spray around the cases of incidence of the disease: 

• Models of continuous variation, where the objective is to generate 

continuous surfaces determining the areas of greater risk from a sample of 

places where the mosquitoes were collected (sample of discontinuous 

points). 

• The point processes, where the objective is to model the probability of 

capture of the mosquitoes. In this case, the random variable is not the 

value of an attribute (presence or absence of the mosquito) but the place 

where it has been captured. 
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In the urban area, what is the preferred environment for the mosquito 

reproduction? 

To estimate the mosquito nursery places it is necessary to identify in a certain 

region, the areas of concentration of some environmental attributes that encourage 

the emergence of the mosquito like, for example, organic matter and soil 

condition. In this case the continuous variation models could be used to infer 

surfaces with the values of these attributes. 

Is there any relationship between the canine prevalence and the socioeconomic 

conditions of the population? 

Mosquitoes only do not perpetuate the epidemic. It is necessary that sick animals 

exist from whom they feed from, such as dogs. However, it is known that the 

presence and resistance of dogs to the illness depends on their nutritional 

condition and consequently on the socioeconomic situation - the acceptance of the 

elimination of sick animals is also related to the income. Thus it is necessary to 

study both the illness incidence on dogs and the socioeconomic profile of the 

population as well as the prevalence of human cases. In this case, the analysis 

should involve counts by area, for example, socioeconomic indicators. That is, the 

available information about the region is complete, with data grouped by area. 

Thus, we aim at studying the relationship between the different indicators 

considering their spatial structure. In those cases, the discrete variation model is 

used. 

The application of the basic inferential models was exemplified and we 

also discussed about how these procedures might contribute to the resolution of a 

certain question. We will present next the basic concepts of each one of them. 
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Inferential Models 

Motivated by different application areas, the inferential models were separately 

developed for each of the situations described above. The unification of this field 

is not yet completely defined, and it is frequently possible to apply more than one 

type of modeling to the same data set, as we can see in the example above. Then 

what would be the advantages of a form upon the other? Sometimes, of course, 

the phenomenon under study presents discrete spatial variation, that is, isolated 

points in space. However, frequently the discrete models are frequently used for 

practical reasons, like the availability of area data only. One of the advantages of 

continuous models is that the inference does not limit itself to arbitrarily defined 

areas. On the other hand, discrete models allow the easier estimation of 

association parameters between the variables. The researcher will make the final 

choice, for he knows there is no such thing as the “correct model”, but searches 

for a model that better adjusts to the data and that offers the greatest potential for 

the comprehension of the phenomenon under study. 

Point processes 

Point processes are defined as a set of irregularly distributed points in a 

terrain, whose location was generated by a stochastic mechanism. The localization 

of points is the object of study, which has the objective of understanding its 

generating mechanism. A set of points (u1, u2, …, un) in a certain region A is 

considered where events occurred. For example, if the phenomenon under study is 

homicides occurred in a certain region, we wish to verify if there is any 

geographic pattern for this kind of crime, that is, to find sub-regions in A with 

greater probability of occurrence. 

The point process is modeled considering subregions S in A through its 

expectancy E[N(S)] and the covariance C[N(Si), N(Sj)], where N(S) denotes the 

number of events in S. If the objective of analysis is the estimation of the probable 

locations for the occurrence of certain events, these statistics should be inferred 

considering the limit value for the quantity of events per area. This limit value 

corresponds to the expectancy of N(S) for a small region du around point u, when 
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that tends to zero. This expectancy is denominated intensity (first order property), 

defined as: 

}
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Second order properties can be defined the same way, considering the joint 

intensity �(ui,uj) between infinitesimal regions |du| and |duj| that contain points ui 

and uj. 
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When the process is stationary, �(u) is a constant, �(u)= �; if it is also 

isotropic, �(ui,uj) reduces to �(|h|), being |h| the distance between the two points. 

When the process is non-stationary, that is, the mean intensity varies in region A, 

the modeling of the dependency structure �(ui,uj) must incorporate the variation of 

�(u).  

Continuous variation 

The inferential models of continuous variation consider a stochastic 

process },),({ 2ℜ⊂∈ AAuuZ  whose values can be known in every point of the 

study area. Starting from a sample of one attribute z, collected in various u points 

contained in A, {z(u�), �=1, 2,…,n}, we aim at inferring a continuous surface of 

values of z. The estimation of this stochastic process can be done in a completely 

non-parametric way or from kriging estimators, like the ones described in chapters 

3 and 4 of this book. These classical inferential models of surfaces estimation are 

denominated geostatistics. Geostatistics uses two types of estimation procedures: 

the kriging and the stochastic simulation. In kriging, at each point u0, a value of 

the random variable Z is estimated, )(ˆ 0uz , using an estimator )(ˆ
0uZ , that is a 

function of the data and of the spatial covariance structure ))(,()(ˆ
0 nCfuZ = . 

These estimators present some important properties: they are not biased and are 

optimal in the sense that they minimize the functions of the inferential errors. 
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In stochastic simulation, the procedures reproduce images of the random 

function Z through the equiprobable realization of the model of the established 

stochastic process. Each realization, also called stochastic image, reflect the 

properties considered in the model of the random function used. Generally the 

realizations must honor the data and reproduce the function of accumulated 

univariate distribution, F(z), and the spatial covariance structure considered. 

Kriging has thus as an objective to compose the surface z through optimal 

point estimates, )(ˆ uz , while the objective simulation aims at reproducing the 

spatial variability of such surface through possible global representations of the 

random function model. In order to permit the realization of the inferential 

processes of kriging and simulation, it is necessary to assume the hypothesis that 

the stochastic process is stationary of second order, that is, a process whose mean 

is constant in space and whose covariance depends only on the distance vector 

between the samples.  

Discrete variation 

The inferential models of discrete variation concern the distribution of 

events whose localization is associated to areas delimited by polygons. This case 

occurs much frequently when we deal with phenomena aggregated by 

municipalities, quarters or census tracts, like population, mortality and income. In 

this case, we don’t have the exact locality of the events, but value aggregated by 

area. The objective is to model the pattern of spatial occurrence of the geographic 

phenomenon under study.  

In this type of modeling we consider that the geographic space under 

study, region A, is a fixed set of spatial units. The most used model of distribution 

considers a stochastic process {Zi:i=1,2,…,n}, composed of a set of random 

variables. We seek to construct an approximation of the joint distribution of these 

variables Z={Z1,…,Zn}, where each random variable is associated to one of the 

areas and has a distribution to be estimated. If the process is stationary, the 

expected value of Zi is the global mean of the region and the covariance structure 

depend only on distance, or on the neighborhood structure between the areas. 
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Conclusions 

This review presented the main concepts of the spatial geographic data 

analysis and the main types of data and its computational representations. The 

different types and problems of Spatial Analysis of Geographic Data are 

summarized in Table 1 

Table 1-1 

Types of Data and Problems in Spatial Analysis. 

 Data Types Example Typical problems 

Analysis of point 

patterns 

Localized events Disease incidence Determination of 

Patterns and 

Aggregations 

Surface analysis Samples of fields 

and matrixes 

Mineral deposits Interpolation and 

uncertainty measures 

Areal analysis Polygons and 

attributes 

Census data Regression and joint 

distributions 

 

To summarize the discussion, it is important to consider the conceptual 

problem of the spatial analysis from the point of view of the user, as synthesized 

in Figure 9. The specialists in the domains of knowledge (like Soils Sciences, 

Geology, and Public Health) develop theories about the phenomena, with support 

of the visualization techniques of the GIS. These theories include general 

hypothesis about the spatial behavior of the data. From these theories it is 

necessary that the specialist formulate quantitative inferential models, that can be 

submitted to validation and corroboration tests, through the procedures of Spatial 

Analysis. Then, the numerical results can then give support or help reject 

qualitative concepts of knowledge domain theories.  
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Figure 9 – Relationship between spatial analysis and the knowledge domains 

theories 

 

As discussed in this chapter and exemplified in the case of Visceral 

Leishmaniasis, there is no such thing as a “correct model” for each problem. The 

inferential models are useful above all to gain a better knowledge about the 

problem. Many times it will be necessary to combine the different approaches 

(point processes, continuous variation and discrete variation) to aggregate 

information to the problem studied. In this case, there is no “magic formula” and 

whatever the knowledge domain, the specialists will benefit knowing all the 

techniques presented here. 

This vision expresses at the same time the potential and the limitations of 

the Spatial Analysis. The quantitative techniques of Spatial Analysis should 

always be at the service of the knowledge of the specialists and never be used as 

an end in itself. Its consistent use requires that two pre-conditions be satisfied: the 

domain of the fundamental theories of Geoprocessing and Spatial Statistics and a 

solid work methodology, result of the association of mathematical models with 

the specialist  subjective interpretation. 

The need to combine different inferential models and to have a solid 

knowledge of the different techniques derives from the very nature of the 

geographic space. To employ the formulation of Milton Santos, the space is a 
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whole, expressed by the dualities between form and function and between 

structure and process; these polarities are made evident when we utilize analytical 

tools. Using GIS and spatial analysis, we can adequately characterize the form of 

the space organization, but not the function of each of its components. We can 

also establish what the structure of the space is when we model the phenomenon 

under study, but hardly will we be able to establish the dynamic nature of the 

processes, be they natural or social. The relationship between structure and 

process can only be solved when the combination of analytical techniques (that 

describe the structure of the organization of space) and the specialist (that 

understands the dynamic of the process). 

This approach allows us to build a non-manichaean vision of the 

technologies of Spatial Analysis and Geoprocessing. Neither a panacea with 

universal application procedures, nor a mere instrument for the automation of 

established techniques, requires from their users an active and critical attitude. 

This equilibrium between form and function and between structure and process is 

essential to the correct use of the concepts presented in this book. 
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Appendix - Software for Spatial Analysis 

The popularity of geographic information systems and the development 

and validation of the techniques of spatial statistics, described in this book, have 

motivated enterprises and institutions involved in software development to seek 

ways of unifying these approaches. Until a short time ago, it was very hard to find 

GISs with spatial analysis functions. More recently, this situation has been 

changing rapidly and a good part of the techniques described in this book is 

already integrated to some of the GISs available in Brazil. Due to wide range of 

techniques described here, not all of them are integrated to same software and the 

specialist may need to combine different systems. 

For the reader information, we have included ahead a description of 

libraries and software specialized in spatial analysis and geographic information 

systems that feature spatial analysis functions. Given the rapid changes, we ask 

the reader to consider this as an incomplete list. For an updated version of the 

subject we recommend a visit to www.ai-geostats.org, maintained by Gregorie 

Dubois, which is an excellent site on the subject. Besides the software mentioned 

ahead, we must stress that the IDRISI and the GRASS, two very popular GISs, 

have interface with the GSTAT environment and can perform geostatistical 

analysis. See the contents of Table 3. 

Table 2 - GSLIB – Geostatistics Library 
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