Seasonal monitoring of atmospheric constituents using multi-angle MODIS data as support for atmospheric correction in the Amazon region

Resumo

Satellite data provide the only viable means for systematic monitoring of remote and large ecosystem, such as Amazon. However, atmospheric attenuation distorts optical remote sensing measurements, and therefore, accurate atmospheric correction (A/C) is a key requirement for retrieving reliable surface reflectance (R$_sup$). In this sense, the knowledge of the seasonal patterns of cloud cover and atmospheric constituents is essential for remote sensing applications. Multi-angle Implementation of Atmospheric Correction (MAIAC) is a new Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm that combines time series approach and image processing to derive surface reflectance and atmosphere products, such as aerosol optical depth (AOD), columnar water vapor, and cloud mask. In this research, three main analyses were performed: (i) validation of MAIAC AOD retrievals using ground-data from 19 AERONET sites in the South America; (ii) evaluation of seasonal pattern of cloud cover and key atmospheric constituents over the Amazon basin; and (iii) assessment of AC methods (6SV, ACOLITE and Sen2Cor) applied to MultiSpectral Instrument (MSI) Sentinel-2 image over Amazon floodplain lakes. In the first analysis (i), MAIAC AOD Terra/Aqua retrievals showed high agreement with ground-based AERONET measurements, with correlation coefficient (R) close to unity (R$_terra$: 0.956 and R$_Aqua$: 0.949). However, MAIAC accuracy varies with land cover type, and comparisons revealed a high fitness for cropland, forest, savanna and grassland covers, with more than 66% of retrievals within the expected error ($dT$4AOD=$±$0.05$^$AOD$±$0.05) and R exceeding 0.8 for both Terra and Aqua products. Over bright surfaces, however, MAIAC retrievals showed lower correlation than those of vegetated areas, and overestimated retrievals over shrubland and barren areas. In the second analysis (ii), the seasonal pattern of cloud cover and key atmospheric constituents presented clear distinction amongst four Amazon regions, with relative high (low) cloud cover and low (high) atmospheric loading during wet (dry) season, exception for water vapor content. The sub-basin analysis showed that Negro and Caqueta-Japurá sub-basins are under quasi-constant cloud cover (80-100%) throughout the year, while High-Madeira and Tapajos present a cloudiness regime during dry season. For the temporal analysis, drought years present the most critical regimes of aerosol loading, with a peak in September. In the last analysis (iii), A/C results of the MSI visible bands illustrate the limitation of the methods over dark lakes (R$_sup$ < 1%), and a better match of the Rsup shape compared with in-situ measurements over turbid lakes, although the accuracy varied depending on the spectral bands and methods. Particularly above 705 nm, R$_sup$ was highly affected by adjacent effects of forest, and the proposed adjacency effect correction minimized the spectral distortions in R$_sup$ (RMSE < 0.006). In conclusion, the availability of multi-angle MODIS products contributes with consistent information for both analyses of seasonal constituents and atmospheric correction, what opens a new endeavour for remote sensing studies over Amazon basin. Particularly for inland water, future studies should be focused on distinct surface-atmosphere conditions to assess the quality of these A/C methods. RESUMO: Os dados orbitais fornecem uma única alternativa viável para o monitoramento sistemático de ecossistemas como a Amazônia. No entanto, a atenuação atmosférica da radiação solar distorce as medidas realizadas por sensores ópticos, portanto uma acurada correção atmosférica se torna indispensável para se obter dados consistentes de reflectância de superfície (R$_sup$). Nesse sentido, o conhecimento dos padrões sazonais dos principais constituintes atmosféricos e da frequência de nuvens é essencial para as aplicações do sensoriamento remoto óptico. Multi-angle Implementation of Atmospheric Correction (MAIAC) é um novo algoritmo aplicado ao sensor Moderate Resolution Imaging Spectroradiometer (MODIS). Esse algoritmo utiliza a abordagem do processamento de série temporal de imagens para geração de produtos em reflectância de superfície e extração de informações atmosféricas, como a profundidade óptica do aerossol (aerosol optical depth, AOD), a coluna de vapor d$'$água e a máscara de nuvem. Nesta pesquisa foram realizadas três principais análises: (i) a validação do produto MAIAC AOD utilizando medições in-situ de 19 estações da AERONET distribuídas na América do Sul; (ii) a análise dos padrões espaço-temporais referentes à frequência de nuvens e dos principais constituintes atmosféricos na região Amazônica; e (iii) a avaliação de métodos de correção atmosférica (6SV, ACOLITE e Sen2Cor) aplicados ao sensor MSI / Sentinel-2 em lagos de várzea na Amazônia. Na primeira análise (i), as estimativas de AOD do MAIAC Terra e Aqua demonstraram uma alta concordância com as medições in-situ da AERONET, com coeficientes de correlação (R) iguais a 0.956 (Terra) e 0.949 (Aqua). A acurácia do MAIAC varia com o tipo de cobertura. As comparações revelaram uma alta concordância das estimativas de AOD em áreas com agricultura, floresta, savana e pastagem - mais de 66% das estimativas ficaram dentro do erro esperado ($dT$4AOD=$±$0.05$^$AOD$±$0.05) e com R excedendo 0.8 para ambas as plataformas Terra e Aqua. No entanto, em áreas com alta reflectância de superfície (bright surfaces), as estimativas do MAIAC demonstraram uma baixa correlação quando comparadas àquelas em áreas vegetadas, em que se observa uma superestimativa dos valores para regiões sem vegetação (áridas) ou desérticas. Na segunda análise (ii), o padrão sazonal dos constituintes atmosféricos apresentou uma clara diferença entre os padrões sazonais das 4 regiões amazônicas (noroeste, central, nordeste e sul), com uma alta (baixa) cobertura de nuvens e baixa (alta) carga atmosférica durante o período úmido (seco), com exceção para as concentrações de vapor d$'$água. Os resultados por sub-bacias demonstraram que as bacias do Negro e da Caqueta-Japurá são fortemente afetadas pela alta frequêcia de nuvens (80 100%) ao longo do ano, enquanto Alto-Madeira e Tapajós apresentam uma janela temporal de 3 a 4 meses durante a estação seca com baixa cobertura de nuvens. Na análise temporal, os anos de seca extrema na região apresentaram as maiores cargas de aerossol, com os picos em setembro. Na análise (iii), os resultados da correção atmosférica nas bandas do visível ilustram a limitação dos métodos para os lagos com R$_sup$ < 1% (dark lakes), enquanto em lagos de águas túrbidas há um melhor desempenho em relação a forma e amplitude das curvas espectrais, embora a acurácia varie conforme a banda espectral e o método de correção. Em bandas espectrais com comprimentos de onda superiores a 705 nm, os valores de R$_sup$ foram fortemente afetados pelos efeitos de adjacência relacionados à floresta, e o método proposto para correção da adjacência minimizou as distorções espectrais nos valores de R$_sup$ (RMSE < 0.006). Como conclusão geral, a disponibilidade dos produtos multi-angulares do MAIAC contribui com uma nova fonte consistente de informações para ambas as análises de sazonalidade dos constituintes e correção atmosférica, o que abre novos esforços para aplicações na Amazônia. Para águas interiores em particular, os estudos futuros devem focar na aplicação dos métodos de correção atmosférica em diferentes condições de carga óptica e de tipos de água.

Tipo