Comprehensive Bio-Optical Measurements in a eutrophic hydroelectric reservoirs

16 sampling stations

The Dam

Measurements

$$E_s$$
; E_d ; L_w ; L_{u} ; E_{u} ; L_{sky}

 L_w ; L_{sky}

 $c(\lambda) a(\lambda)$

- *b*_{b (420, 442, 470, 510, 590 and 700 nm)}
- $a_{CDOM}(\lambda), a_{ph}(\lambda), a_{TP}(\lambda), a_{NAP}(\lambda)$

- → RAMSES TriOs
- → ASD Handheld 2
- → ACS 25 cm and 10 cm path length
- → Hydroscat 6P
- → UV-2600 Shimadzu

Dissolved oxygen, pH, turbidity, conductivity. → YSI Probe

Ch-a, TSM and DTC (organic/inorganic fractions), NTK, PT

How profiles were done

RAMES TriOs :

- Cage was lowered from surface down to nearly 1% of E_d (z,550 nm) of subsurface stopping every meter/half meter or less.
- > At each stop, on average 16 measurements were done

ACS, CTD, Hydroscat and Probe sensors :

- Casts were performed in continuous mode
- > Measurements started at below the limit of euphotic zone depth.
- Two casts : one from maximum depth to subsurface and than from subsurface to initial depth.

Sequence of depth measurements for RAMSES

- **P4 Station** (Secchi depth = 0.8 meter)
- → Surface , subsurface, every 0.25 meter up to 2 meters depth.

- **P16 Station** (Secchi depth = 1.6 meters)
- → Surface, subsurface, every meter up to 13 meters depth.

- Chl-a , TSM and DTC
 - → estimated in in three depths: subsurface, Secchi and 3*secchi)

OLI Image second day

Water

ACS & Hydroscat measurements

OAC concentration determined in three depth

т

			P4			P15			P16		
			chlorophyll-a (µg/L)	phaeophytin (µg/L)	Secchi (meter)	chlorophyll-a (µg/L)	phaeophytin (µg/L)	Secchi (meter)	chlorophyll-a (µg/L)	phaeophytin (µg/L)	Secchi (meter)
		sub	242.86	12.55		33.95	1.96		4.88	1.02	
		secchi	435.55	106.84	0.80	269.29	9.10	1.20	63.01	4.09	1.60
		3 secchi	146.72	7.54		53.06	2.38		5.06	3.36	
Subsurface			TSM (mg/l)	TSIM (mg/l)	TSOM (mg/l)	TSM (mg/l)	TSIM (mg/l)	TSOM (mg/l)	TSM (mg/l)	TSIM (mg/l)	TSOM (mg/l)
Secchi	Г	sub	18.60	0.80	17.80	7.38	3.13	4.25	0.88	0.38	0.50
Three Secchi	_	secchi	54.60	3.60	51.00	40.00	1.52	38.48	5.20	1.20	4.00
		3 secchi	39.00	1.40	37.60	3.13	2.50	0.63	1.50	0.62	0.88
			DTC (mg/L)	DIC (mg/L)	DOC (mg/L)	DTC (mg/L)	DIC (mg/L)	DOC (mg/L)	DTC (mg/L)	DIC (mg/L)	DOC (mg/L)
		sub	7.27	2.04	5.22	9.48	5.34	4.14	8.22	5.42	2.80
		secchi	8.74	1.67	7.07	9.30	4.21	5.09	10.02	5.42	4.60
		3 secchi	8.78	3.84	4.94	9.01	4.52	4.50	9.32	5.45	3.88
			NTK (mg/L)	PT (µg/L)		NTK (mg/L)	ΡΤ (μg/L)		NTK (mg/L)	PT (μg/L)	
		sub	1.22	222.51		0.20	16.96		0.30	14.58	
		secchi	2.53	562.30		0.51	133.96		0.10	40.68	
		3 secchi	1.22	298.96		0.10	44.48		0.10	15.86	
			aCDOM (1/m)		aCDOM (1/m)		aCDOM (1/m)				
		Kirk pg 76	400	440	443	400	440	443	400	440	443
		sub	1.2474	0.6264	0.6034	1.4873	0.8893	0.8433	1.0409	0.5349	0.5119
		secchi	1.37	0.65	0.63	1.57	0.88	0.86	1.07	0.54	0.52
		3 secchi	1.54	0.89	0.85				0.87	0.47	0.45
			Slope_CDOM		Slope_CDOM			Slope_CDOM			
		sub		0.0152			0.0112			0.0145	
		secchi		0.0155			0.0121			0.0153	
		3 secchi		0.0114						0.0130	

.

Ramses TriOs

Cláudio Barbosa

Cláudio Barbosa

Cláudio Barbosa

Cláudio Barbosa

Funil reservoir: dataset

Scientific objective suggested by ZhongPing Lee

Can I get vertical distribution of chlorophyll concentration from this dataset?

Can I determine the depth of maximum chlorophyll concentration?

		P4			P15	2	P16			
	chlorophyll-a (µg/L)	phaeophytin (µg/L)	Secchi (meter)	chlorophyll-a (µg/L)	phaeophytin (µg/L)	Secchi (meter)	chlorophyll-a (µg/L)	phaeophytin (µg/L)	Secchi (meter)	
sub	242.86	12.55		33.95	1.96		4.88	1.02		
secchi	435.55	106.84	0.80	269.29	9.10	1.20	63.01	4.09	1.60	
3 secchi	146.72	7.54		53.06	2.38		5.06	3.36		
	TSM (mg/l)	TSIM (mg/l)	TSOM (mg/l)	TSM (mg/l)	TSIM (mg/l)	TSOM (mg/l)	TSM (mg/l)	TSIM (mg/l)	TSOM (mg/l)	
sub	18.60	0.80	17.80	7.38	3.13	4.25	0.88	0.38	0.50	
secchi	54.60	3.60	51.00	40.00	1.52	38.48	5.20	1.20	4.00	
3 secchi	39.00	1.40	37.60	3.13	2.50	0.63	1.50	0.62	0.88	
	DTC (mg/L)	DIC (mg/L)	DOC (mg/L)	DTC (mg/L)	DIC (mg/L)	DOC (mg/L)	DTC (mg/L)	DIC (mg/L)	DOC (mg/L)	
sub	7.27	2.04	5.22	9.48	5.34	4.14	8.22	5.42	2.80	
secchi	8.74	1.67	7.07	9.30	4.21	5.09	10.02	5.42	4.60	
3 secchi	8.78	3.84	4.94	9.01	4.52	4.50	9.32	5.45	3.88	

Brazilian Inland Water

Effective sea-surface reflectance ρ (defined as the ratio of the surface-reflected radiance at the specular direction corresponding to the downwelling sky radiance from one direction) varies not only for different measurement scans, but also can differ by a factor of 8 between 400 nm and 800 nm for the same scan. (Lee at al. 2010)

Fig. 4. Similar as Fig. 3, but with two different Chl values. Green: Chl = 0.05 mg m^{-3} ; blue, Chl = 0.1 mg m^{-3} .

Brazilian Inland Water

 $\mathbf{26}$

First steps for a better understand of the dataset

1-Removal of surface-reflected light of remote-sensing reflectance

Lee et al, Optics Express 2010 → Lee et al, Applied Optics, 1999.

Spectral optimization approach

2-Determined Total absorption \rightarrow QAA

Lee et al, Applied Optics, 2002.

Removal of surface-reflected light of R_{rs}

Lee et al, Optics Express 2010 → Lee et al, Applied Optics, 1999.

Correcting for the reflected skylight and solar glint

 $T_{rs}(\lambda) \approx R_{rs}(\lambda) + F(\theta)S_{rs}(\lambda) + \Delta,$

$$R_{rs}^{\text{raw}}(\lambda) = T_{rs}(\lambda) - F(\theta)S_{rs}(\lambda),$$

 $R_{rs}^{raw}(\lambda) \approx R_{rs}(\lambda) + \Delta.$

T_{rs} = Total remote-sensing reflectance

S_{rs} = Surface-reflected =Lsky/Ed Δ is a spectrally constant

Spectral optimization approach

Removing surface-reflected light

Station 16

Focus mimic above 670 nm → heterogeneous water column

Brazilian Inland Water

Cláudio Barbosa

Removing surface-reflected light

Station 12

Rrs_corrected

700

Fresnel corrected

Fresnel = 0.022

.....

800

30

Removing surface-reflected light

Station 15

Total absorption -> ACS versus "Lab"

Station 12

$$a_{t}$$
 (lab) = $a_{w} + a_{ph} + C_{ph} + a_{d} + C_{TSS} + a_{CDOM}$

For QAA validation

Station P12

Flat

715

Four water column depth

33

Station P12

File 002 ACS

uncorrected

Median & Mean between 0.16 to 1 m depth

Total absorption -> ACS versus "Lab"

Station 16

$$a_{t}$$
 (lab) = $a_{w} + a_{ph} + C_{ph} + a_{d} + C_{TSS} + a_{CDOM}$

water sampled					
Depth	chlorophyll-a				
(meter)	(µg/L)				
0.3 m	4.88				
1.6 m	63.01				
4.8 m	5.06				
TSM (mg/l)					
	0.88				
	5.20				
	1.50				
TSM = 0.88 mg/L					

Mater compled

Total absorption -> ACS versus "Lab"

Station 16

$$a_{t}$$
 (lab) = $a_{w} + a_{ph} + C_{ph} + a_{d} + C_{TSS} + a_{CDOM}$

Chl-a = 4.8 µg/L TSM = 3.04 mg/L

Depth (motor)	chlorophyll-a
(meter)	(µg/∟)
0.3 m	4.88
1.6 m	63.01
4.8 m	5.06
TS	M (mg/l)
	0.88
	5.20
	1.50

Water sampled

Chl-a = 33.94 µg/L TSM = 3.04 mg/L

 $\mathbf{36}$

Cláudio Barbosa

Brazilian Inland Water

37

obrigado

