LabISA - Instrumentation

Laboratory for Aquatic

Systems and Brazilian inland

water bio-optical dataset

Cláudio Barbosa claudio@dpi.inpe.br

Earth Observation General Coordination - OBT

Brazilian inland water-UMASS- September 2015

Remote Sensing of inland waters research group

The history timeline activities (two periods)

- > Above water measurements & empirical algorithms (2001-2010)
 - Focused in the seasonal dynamics of volume and water composition in the Amazon floodplain lakes.

- > Water column profiles measurements & semi analytical algorithms
 - Focused in bio-optics characterization and the seasonal dynamics of bio-optics properties

First period: Above water measurements (2001-2010)

In 2001, we began studies focused on the development of methodologies integrating remote sensing data, spectroradiometric data and empirical algorithms to understand the dynamics of water circulation in the Amazon floodplain lakes.

Up to 2007 nearly 10 field campaigns measuring <u>above water</u> reflectance, limnological variables as well as bathymetry of some lakes

After 2007 we also started to make measurements in hydroelectric reservoirs.

Built a database integrating all available radiometric and limnological data.

2001 to 2010

Above water measurements in the amazon floodplain Lakes

Study sites in the Amazon floodplain (three sites)

Site 1 → 900 km upstream from the Amazon River mouth.

Diversity of Amazonian water types

Black water (Negro River)

Organic dissolved matter

White water (Amazon River)

High inorganic matter

Chlorophyll concentration $500-800\mu g/liter$

Clear Water (Tapajós River)

The flood pulse leads to a complex mixture of water

composition seasonally

Effect of food pulse on the water composition

	-				
V ariável		Média	Rio	Mínimo	Máximo
			Amaz.		
	rising	7,72	6,5	6,10	9,30
ън	low	6,75	6,5	4,70	7,50
P11	decline	7,27	6,6	5,90	8,00
	[high	7,53	6,6	6,01	9,4
	[160,79	62	12,00	375,00
Turbidez		769	183	39,00	1645,00
(NTU)	[236,78	354	101,00	569,00
]	29,93	124	5,00	90,00
	[rising	66,13	27,5	5,46	200
TSS	[low	462,71	60	12,74	1137,75
(mg/l)	decline	98,7	161	36,75	359,42
	high	14,51	58	5,68	34,90
		68,78	4,15	5,61	350
Clorof.	[33,4	2	0,80	87,86
(µg/l)	[8,2	2,3	0,21	25,79
	[28,85	0,7	1,16	131,28
	[rising	8.37	5.11	4.20	31.52
COD	[low	6.04	4.83	1.03	11.38
(ppm)	decline	5.56	4.47	2.81	11.25
	hiah	6.73	8.32	4.38	15.29

Mean concentration values

Effect of food pulse on the water spectral response

Spectra shaped by water composition

Intensive sampling in different water level stage (2003-2010)

Field infrastructure

Field infrastructure

MERIS Image

Visual intercomparison of spectral shape

Spectron SE590 & Hand Held ASD

Visual intercomparison of spectral shape

Cláudio Barbosa

Water masses characterization (decline water) Clustering based on (SAM)

	TURB	TSS	TSI	TSO	TS0/TSS	TSO/TSI	CLORO	cloro/TSS	CID	COD
C	202	87.52	56.69	30.84	0.35	0.54	204.30	2.33E-03	15.04	6.56
C	87	39.30	23.82	15.48	0.39	0.65	89.75	2.28E-03	10.29	4.74
C	205	95.08	76.81	18.27	0.19	0.24	63.31	6.66E-04	11.46	6.04
C	161	65.17	54.38	10.79	0.17	0.20	25.57	3.92E-04	12.18	5.25
C	i 124	52.69	35.59	17.10	0.32	0.48	91.86	1.74E-03	10.75	4.75
α	151	55.08	40.41	14.66	0.27	0.36	61.62	1.12E-03	8.33	5.20

Chlorophyll concentration (empirical models)

mapping water masses

Site 2 An extension of site 1 - nearly 1000 km

Site 2 An extension of site 1 - nearly 1000 km

Seasonal changes in chlorophyll distributions in Amazon floodplain lakes derived from MODIS images (Novo et all, 2006 Limnology (2006) 7:153-161)

Chl (Images MODIS, empirical model)

Seasonal changes :2002 & 2003

Remote Sensing of water circulation dynamics in the Curuai floodplain/Amazon River

Spectral Library: References for water types classification in Amazon wetlands

Fluorometric and Spectral data applied to estimate chlorophyll concentration in freshwater environments

Empirical models for suspended sediments concentration estimative in white water amazon rivers from LANDSAT 5 images

Integration between MODIS images and census data to assessment of livestock impact in aquatic systems on the lower amazon

Mapping the Amazon river floodplain using object based classification with SRTM-DEM and HAND-DEM Data

Occurrence and removal of sunglint effects in hyperspectral and high spatial resolution images from the Spectrir sensor

Reference spectra to classify Amazon water types Lobo at all 2012 - IJRS Vol. 33, No. 11

A spectral database (392 spectra) were compiled into spectral library → resulting in 10 reference spectra, that describe four limnological characteristics

Result of SAM algorithms: overall accuracy of 86%

Mapping potential cyanobacterial bloom using Hyperion data in Patos Lagoon estuary -Brazil

Spectral angle mapping using two spectral library :
→ analytical (Kutser, 2004)
→ empirical

Hyperion image

Cláudio Barbosa

Blue Planet Symposium: Advances of inland water Remote sensing in Brazil

Project: Spatio-temporal evaluation of inland aquatic system's eutrophication in response to sugarcane expansion

Airborne Hyperspectral Imaging

SpecTIR V-S: Flight lines

357 spectral bands

Blue Planet Symposium: Advances of inland water Remote sensing in Brazil

Allowed characterizing patterns of spatio-temporal dynamics of water masses composition without however characterizing the spectral composition of the underwater light field.

→ key information to support primary productivity studies.

In 2010, we moved towards to measure the **Inherent and Apparent Optical Properties** in water column in order to do:

- the spectral characterization of the underwater light field,
- > the bio-optical characterization of lakes and reservoirs
- > Use semi analytical algorithms to retrieve constituents.

Why? -> semi analytical algorithms have time frame coverage

Second period: Water column measurements (2011-2016)

The history timeline (two periods)

- > Above water measurements & empirical algorithms (2001-2010)
 - Focused in the seasonal dynamics of volume and water composition in the Amazon floodplain lakes.

- > Water column profiles measurements & semi analytical algorithms
 - \succ Focused in bio-optics characterization and the seasonal dynamics
 - of bio-optics properties

Motivation

36th ISRSE: Brazilian Inland Water Bio-Optical Dataset

Motivation

36th ISRSE: Brazilian Inland Water Bio-Optical Dataset

Second period: Water column measurements (2011-2016)

It took us nearly three years and be involved in six projects to acquire the whole set of instruments

- > ANEEL
- Three FAPESP Projects
- > FUNDO AMAZONAS
- > CNPq UFC
- FAPESP mamiraua

> Modeling human impacts on ecological properties of wetland and aquatic ecosystems of central Amazon floodplain.

Spatio-temporal evaluation of inland aquatic system's eutrophication in response
 to sugarcane expansion using remote sensing images

> Emissions of Greenhouse Gases in Hydroelectric Reservoirs

Instrumentation Laboratory for Aquatic Systems (LabISA)

Two AC-S (10 and 25 cm)

CTD

LISST-Portable

UV-VIS-2600 Shimadzu

10AU Field and Laboratory Fluorometer

ECO BB9

HydroScat-6P

http://www.dpi.inpe.br/labisa/index_en.html

Six RAMSES radiometer

ASD HandHeld 2: VNIR

ADP- Acoustic Doppler Profiler

Brazilian Inland Water

Course "Radiative Transfer Theory, Optical Oceanography, and Hydrolight" (Curtis Mobley, INPE, 2013)

36th ISRSE: Brazilian Inland Water Bio-Optical Dataset

Examples of recent results (2012 - 2015)

Sampled sites (six reservoirs and lakes at Amazonian floodplain)

Selected for accomplishing the goals of the projects that funded the instruments.

Goals: providing support for

- Effects of climate change in the Amazon region
- Environmental impacts and the net carbon budget in Brazilian reservoirs.

Sampled sites								
	Site	Area (Km²)		²)	Biome			
1	Itaipu	1.350			Atlantic Tropical Forest			
2	Três Marias	1.040			Brazilian Savana (Cerrado)			
3	Funil	40			Atlantic Tropical Forest			
4	Ibitinga	114			Atlantic Tropical Forest			
5	Tucuruí		2.430		Amazon			
6	Curuai	2000			Amazon			
7	Açude Orós	190			Semi-arid Caatinga			

36th ISRSE: Brazilian Inland Water Bio-Optical Dataset

Optical and limnological data were gathered along 13 field campaigns Between 2012 and 2015

Brazilian Inland Water

Measured variables:

Defined taking as reference the ones listed on NASA document that describes key *in situ variables* to be measured for satellite ocean color sensor validation, algorithm development and algorithm validation

Sampling station were defined based on homogeneous spectral response mapped from an A unsupervised classification

Measured variables: Profiles of Apparent Optical Properties (AOP)

Six inter-calibrated spectroradiometers

Downward & Upward irradiances /radiances

 $E_{s}, E_{d}, L_{w}, L_{u}, E_{u}, E_{sky}$ (320 to 950nm)

Reservoirs

Measured variables:

Profiles of Inherent Optical Properties (IOP) & Probe

Attenuation & Absorption & Backscattering

Probe (Tu, Te, Co, pH, DO)

Specific coefficients (a_{ph}^* , a_{NAP}^* , a_{TP}^*) OAC (Chl-a, TSS, TSI, TSO, DOC, DIC, CDOM)

Due to remoteness during Amazonian campaigns , the team stay all time onboard.

4 Hz sampling rate

Some data has to be submitted to correction protocols

- \checkmark Absorption measurements \rightarrow be corrected for scatter absorption tube
- \checkmark Backscattering \Rightarrow have be corrected for attenuation in optical path
- \checkmark AOP measurements \rightarrow have be normalized for sunlight changes

Algorithms were developed and tested for case I waters

- \checkmark Have to be assessed since efficiency is related to water composition
- \checkmark Assessments were made for Amazonian lakes water.

(Carvalho et al, 2015 special edition on inland waters of RSE).

Descriptive statistics of some bio-optical properties of Brazilian inland aquatic systems

	Statistic	Tucuruí	Itaipú	Três Marias	Curuai	Ibitinga	Funil	Orós
Zeu (1%)	Mean/Median	4.84/6.87	3.17/3.26	6.57/7.54	1.18/1.38	5.61/7.42	2.45/3.11	-
[m]	Min/Max	1.14/9,39	1.89/4.18	2.19/13.14	0.35/2.72	2.66/9.20	1.02/4.51	-
Kd (PAR)	Mean/Median	0.95/0.67	1.45/1.41	0.70/0.61	3.90/3.33	0.82/0.62	1.88/1.48	-
[m ⁻¹]	Min/Max	0.49/4.03	1.10/2.44	0.35/2.10	1.69/13.30	0.50/1.73	1.02/4.50	-
	Std. deviation	0.75	0.31	0.37	1.72	0.36	1.00	-
C(450)	Mean/Median	4.51/2.89	-	3.66/2.72	20.08/19.44	4.75/4.39	6.44/5.62	-
[m ⁻¹]	Min/Max	1.47/16.04	-	1.40/15.35	12.47/37.95	2.49/8.10	3.26/12.80	-
	Std. deviation	4.11	-	2.99	-	1.84	3.13	-
(CROM(440)	Mean/Median			0.66/0.41	2.16/2.13	0.88/0.90	0.56/0.56	
[m ⁻¹]	Min/Max			0.19/4.3	1.70/2.66	0.78/0.99	0.36/0.67	
	Std. deviation			0.81	0.23	0.09	0.1	
Turbidity	Mean/Median	3.12/1.45	7.86/8.50	2.87/0.90	20.88/21.70	10.52/7.20	8.77/6.10	11.23/6.00
(NTU)	Min/Max	0.10/17.0	3.60/10.70	0.10/24.10	8.10/33.20	1.00/45.40	3.60/33.80	1.12/99.00
	Std. deviation	4.41	2.09	5.28	5.72	10.52	7.63	13.18
Chl-a (µg/L)	Mean/Median	7.19/5.01	1.61/1.12	5.47/4.67	18.41/11.74	41.9/20.65	38.00/13.08	22.33/19.44
	Min/Max	2.75/39.53	0.59/04.81	1.17/13.22	0.90/92.06	3.72/180.40	1.39/242.86	0.50/80.67
	Std. deviation	7.10	1.21	3.33	18,82	53.90	64.15	16.23
TSS	Mean/Median	3.43/1.92	1.77/1.61	4.34/3.33	32.37/15.72	7.02/5.20	5.67/5.00	13.26/9.00
(mg/L)	Min/Max	0.26/20.41	0.63/3.77	1.33/11.93	0.53/161.85	0.80/30.80	0.87/18.60	1.00/100.00
	Std. deviation	4.26	0.74	2.54	34.93	7.35	4.50	15.25
DOC	Mean/Median	2.32/1.98	2.17/2.06	1.95/1.90	2.11/7.74	3.63/3.44	3.41/3.32	9.26/8.61
(mg/L)	Min/Max	1.45/7.03	1.73/4.09	0.93/2.71	4.14/7.74	2.72/4.91	2.80/5.22	5.27/14.48
	Std. deviation	1.12	0.62	0.37	1.05	0.63	0.62	1.85

✓ In reservoirs, the chlorophyll-a ranged from 0.6 to $243\mu g/L$ while in Amazonian lakes ranged from 0.90 to 92 $\mu g/L$.

- ✓ In reservoirs the highest Total Suspended Solids (TSS) was 30 mg/L while at the Amazonian lakes was as high as 160 mg/L.
 - ✓ The median value of beam attenuation coefficient (450 nm) reaches 5 m⁻¹ in reservoirs and 19 m⁻¹ at the Amazonian lakes.
 - ✓ The Kd (PAR)** reaches 1.5 m⁻¹ in reservoirs and 3.3 at the Amazonian lakes

Spectral composition of normalized downwelling irradiance relative to surface incoming light (incident irradiance $Es(\lambda)$)

Red curves are the depth of euphotic zone, and white curves are the attenuation depth (the thickness of the layer from which 90% of the signal recorded by satellite sensor originates).

Brazilian Inland Water

Main difficulty faced \rightarrow The huge amount of data of each campaign

- \checkmark Developing an interactive toolbox for processing and analyzing
- > We are building a dataset which is the first and most comprehensive bio-optical information available for the Brazilian inland waters.

> OPTICAL MODELS AND IN SITU DATA COLLECTED IN FUNIL (RJ) RESERVOIR USED TO AID RESEARCHES ON REMOTE SENSING OF CONTINENTAL WATERS

> OPTICAL AND DISSOLVED ORGANIC CARBON CHARACTERIZATION IN TRÊS MARIAS/MG RESERVOIR

> TEMPORAL CHARACTERIZATION OF THE BIO-OPTICAL PROPERTIES OF THE IBITINGA/SP RESERVOIR

> BIO-OPTICAL MODELS TO SUPPORT THE RETRIEVAL OF OPTICALLY ACTIVE CONSTITUENTS IN AMAZON FLOODPLAIN LAKES

Obrigado

