26#ifndef __TERRALIB_CLASSIFICATION_INTERNAL_MAP_H
27#define __TERRALIB_CLASSIFICATION_INTERNAL_MAP_H
42#include <boost/numeric/ublas/matrix.hpp>
136 const std::vector<unsigned int>& attributesIndices,
137 const std::vector<unsigned int>& sampleLabels,
138 const bool enableProgressInterface) ;
151 const std::vector<unsigned int>& attributesIndices,
152 const std::vector< double >& inputNoDataValues,
154 const unsigned int outputIndex,
155 const double outputNoDataValue,
156 const bool enableProgressInterface) ;
182 const std::vector<unsigned int>& attributesIndices,
183 std::vector< double >& prioriProbs )
const;
Abstract parameters base interface.
Matrix manipulation utils.
This class can be used to inform the progress of a task.
An exception class for the Classification module.
AbstractParameters * clone() const
Create a clone copy of this instance.
void reset()
Clear all internal allocated resources and reset the parameters instance to its initial state.
std::vector< std::vector< double > > m_classesMeans
Classes means;.
const ModelParameters & operator=(const ModelParameters ¶ms)
std::vector< boost::numeric::ublas::matrix< double > > m_classesCovarianceMatrixes
Classes covariance matrixes.
std::vector< unsigned int > m_classLabels
class labels
std::vector< double > m_prioriProbs
Priori probabilities, one for each class. Values from 0 to 1 (use an empty vector to allow internal c...
void reset()
Clear all internal allocated resources and reset the parameters instance to its initial state.
const Parameters & operator=(const Parameters ¶ms)
unsigned int m_prioriCalcSampleStep
A positive non-zero sample step used when calculating piori probabilities (default:5 - 1/5 of samples...
AbstractParameters * clone() const
Create a clone copy of this instance.
bool initialize(const Parameters ¶ms)
Initialize this classifier instance with new parameters (further training is required).
bool classify(const InputAdaptor< double > &input, const std::vector< unsigned int > &attributesIndices, const std::vector< double > &inputNoDataValues, OutputAdaptor< unsigned int > &output, const unsigned int outputIndex, const double outputNoDataValue, const bool enableProgressInterface)
Classify an input iterated data and save the result on the output iterated data.
std::vector< boost::numeric::ublas::matrix< double > > m_classesCovarianceInvMatrixes
Classes covariance inverse matrixes.
bool getPrioriProbabilities(const InputAdaptor< double > &input, const std::vector< unsigned int > &attributesIndices, std::vector< double > &prioriProbs) const
Calculate priori probabilities by pre-classifying the input data.
bool m_isInitialized
True if this instance is initialized.
bool initialize(const Parameters ¶ms, const ModelParameters &modelParams)
Initialize this classifier instance with new model parameters (further training not required).
std::vector< double > m_classesOptizedMAPDiscriminantTerm
An optimized portion of the MAP discriminant function.
ModelParameters m_modelParameters
Trained model parameters.
Parameters m_parameters
Internal execution parameters.
const ModelParameters & getModelParams()
Returns the current model parameters.
void reset()
Reset this instance to its initial state.
bool train(const InputAdaptor< double > &samples, const std::vector< unsigned int > &attributesIndices, const std::vector< unsigned int > &sampleLabels, const bool enableProgressInterface)
Train this classifier instance using the initialization parameters and the suppied train data.
Classifiers output data adaptor.
Abstract parameters base interface.
AbstractParameters()
Constructor.
Namespace for classification module of TerraLib.
Configuration flags for the Terrralib Classification module.
#define TECLEXPORT
You can use this macro in order to export/import classes and functions from this module.