Multi Source Classifier
Allows the user to
perform radar raster data classification using following the
methodology described by:
B. C. Braga, C. d. C. Freitas and S. J. S. Sant'Anna,
"Multisource classification based on uncertainty maps," 2015
IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), Milan, Italy, 2015, pp. 1630-1633, doi:
10.1109/IGARSS.2015.7326097.
It is accessible through:
Processing
→ Radar Raster Processing → Multi Source Classifier...
- Number of images: Set
this box value with the correct number of input rasters
used in the process.
- Segmented Image: Click
on the button "..." to select the input segmented
raster.
- Training Samples: Click on the button "..." to
select the input training samples text file.
- Test Samples: Click on the button
"..." to select the input test samples text file.
- Combination
type: How the build the multi-source
classification procedure (sum,
multiplication,minimum,Hellinger,fuzzy).
- Confidence
level: The significance level.
- Horizontal
lag: The horizontal correlation value.
- Vertical
lag: The vertical correlation value.
- Repository:
Click
on the button "..." to select the output
classified segmented raster location.
- Save on Disk:
Enable/disable the creation of extra output data
files.
- Click on the "OK"
button to go the the next window.
Te next window allows the selection of
options related to each input raster data file:
- Click on the button "Input image"
to select the current input data raster.
- Statistic model: The used
input raster data model
(Gaussian,Gamma,IntensityPair,Wishart).
- Stochastic Distance: The
stochastic distance type.
- Parameters:
- ENL: Equivalent
Number of Looks.
- Beta: Beta values for
Renyi distance.
- Covariance Matrix Order:
An integer number for the lexicographic vector and
covariance matrix order.
- Click on the "OK" button to
start the operation.