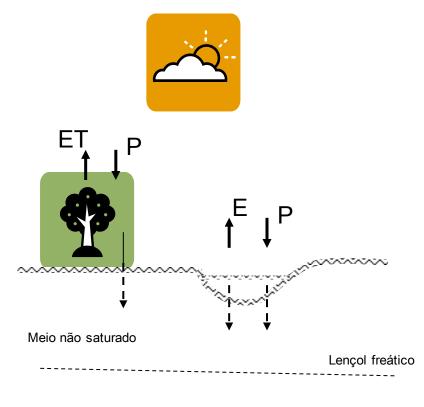
Processos Hidrológicos

CST 318 / SER 456


Tema 3 - Interceptação ANO 2017

Camilo Daleles Rennó Laura De Simone Borma http://www.dpi.inpe.br/~camilo/prochidr/

Conceitos

INTERCEPTAÇÃO

- Retenção de parte da precipitação acima da superfície do solo
- Pode ocorrer em superfícies naturais (florestas) ou antropizadas (edifícios e construções em geral)
- Ênfase do curso: interceptação vegetal
- Função: retenção e acúmulo de uma parcela de água que, ao invés de infiltrar ou escoar, eventualmente atingindo os corpos hídricos, retorna para a atmosfera sob a forma de vapor d'agua
- Qual a importância da vegetação da dinâmica da água em uma bacia?

Meio saturado

Importância da Vegetação

- · Influencia no comportamento da vazão ao longo do ano
 - Favorece a infiltração da água no solo
 - Retarda e atenua o pico de cheias
- Influencia nos processos biogeoquímicos
 - Uma série de **nutrientes** presentes nas folhas e nos troncos são **lixiviados** para o solo a partir do escoamento pelas folhas e, em especial, a partir do **escoamento pelos troncos** (Leal et al., 2016)
 - Como o escoamento pelos troncos compreende, em geral, uma parcela muito pequena da precipitação, esse comportamento tem sido negligenciado em muitos estudos (a medida do escoamento pelo tronco só é viável com troncos de magnitude razoável)

Interceptação vegetal Conceito

- A chuva que cai sobre uma bacia hidrográfica florestada é naturalmente fracionada em 3 parcelas
 - Parte é interceptada e armazenada pela vegetação e evapora
 - Parte escoa pelos troncos
 - Parte atinge a superfície do solo (diretamente ou depois de escoar pelas folhas)
- O processo de interceptação redistribui a água de chuva, e parte do volume incidente não chega ao solo
- Primeiro processo hidrológico pelo qual a chuva passa, por vezes referido como 'perda por interceptação'
- Deve ser levado em conta
 - No gerenciamento dos recursos hídricos
 - Nos modelos chuva-vazão (Savenije, 2004)
- Frequentemente negligenciado devido às dificuldades de medição e grande variabilidade espacial e temporal

Valores

- · Em alguns casos, o volume interceptado não é desprezível
- · Percentuais interceptados

36% - florestas no Chile

22,4% - sequoias nos EUA

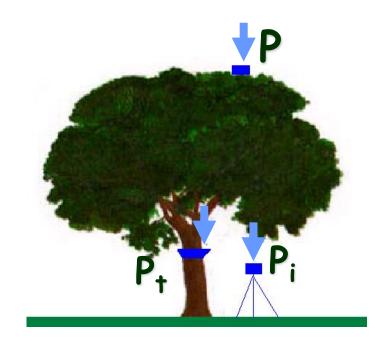
- coníferas do Himalaia
- vegetação ripária em cerrado

22,6% - floresta amazônica

20,6% - Mata Atlântica

Histórico

- Horton (1919) → um dos primeiros trabalhos notáveis no estudo da interceptação
- Estabeleceu as primeiras suposições sobre o processo:
 - O volume das perdas por interceptação é função da capacidade de armazenamento da vegetação (S), da intensidade da chuva e da evaporação durante o evento
 - O percentual das perdas por interceptação decresce com a intensidade de chuva
 - Os volumes escoados pelo tronco são significativos, mas seu percentual em relação à chuva é pequeno


Giglio e Kobiyama (2013)

Histórico

Hibbert (1967)
 Importante revisão sobre os efeitos do manejo florestal na produção
de água:
A redução da cobertura florestal aumenta e
o estabelecimento da cobertura vegetal reduz
Bosh & Hewlett (1982)
□ Confirmaram os efeitos do aumento/redução da produção hídrica
ocasionados pela redução/aumento da cobertura vegetal
Não investigaram os mecanismos envolvidos
Hewlett (1982)
 Suposições existentes até então sobre o papel da interceptação no
balanço hídrico não eram suficientemente boas e o processo
necessitava ser medido em diferentes regiões, climas e tipos de
floresta
Desde então, houve esforços para medição da interceptação em florestas
em diferentes partes do mundo
1994 - Simpósio Internacional de Hidrologia Florestal, em Tóquio (Ohta
et al., 1994)
Interceptação discutida sob o enfoque da modelagem

Grandezas características

- □ Precipitação incidente (P) quantidade de chuva medida acima do dossel ou em terreno aberto, adjacente à floresta
- □ Precipitação interna, transprecipitação ou throughfall (Pi) - chuva que atravessa o dossel florestal, englobando as gotas que passam diretamente pelas aberturas das copas e as gotas que respingam da água retida nas copas
- Escoamento pelo tronco ou stemflow (Pt) - água de chuva que, após ser retida pela copa, escoa pelo tronco em direção à superfície do terreno

Valores de redistribuição das chuvas por tipo de clima

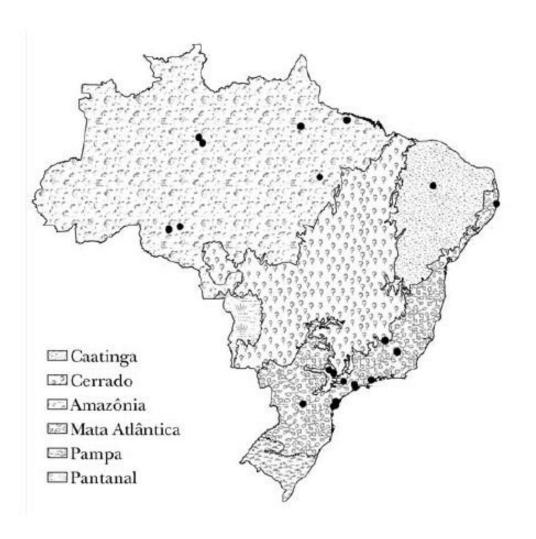
Região	<i>I</i> (%)	<i>Tf</i> (%)	Sf (%)	Referência	
	13,3-22,6		0,6	Cuartas et al. (2007)	
	_	_	0,6-13,6	Levia Jr. & Frost (2003)	
	7,2	91	1,8	Lloyd & Marques (1988)	
् ह	14,5	82	3,5	Manfroi et al. (2004)	
Tropical	12–17	82–87	0,9-1,5	Tóbon Marin et al. (2000)	
	26,7-42,4	_	_	Gash et al. (1980)	
	30,6-68,4	30,6-65,2	1-7,6	Horton (1919)	
	12–14	74–76	12	Kuraji et al. (2001)	
	_	_	0,9-20	Levia Jr. & Frost (2003)	
erada	11-36	64-87	0,3-3,4	Oyarzún et al. (2011)	
Árida e semi-árida Temperada	22,4	75,1	2,5	Reid & Lewis (2009)	
-árida	_	_	0,8–45	Levia Jr. & Frost (2003)	
e semi	13)	81	6	Medeiros et al. (2009)	
Árida	27,2	27-69,7	0,6-5,6	Návar & Bryan (1990)	Tabel terna

I = 7,2 a 22,6%

Pt = 0,6 a 13,6%

I = 11 a 68,4%

Pt = 0,3 a 20%


I = 13 a 27,2%

Pt = 0,6 a 45%

Tabela 1 - Alguns valores de interceptação (*I*), chuva interna (*Tf*) e escoamento de tronco (*Sf*) registrados nas regiões tropicais, temperadas, áridas e semi-áridas.

Percentuais em relação à chuva total. Giglio e Kobiyama (2013)

Alguns locais de medida para o Brasil

Fatores condicionantes da interceptação

- ☐ Os estudos de redistribuição da chuva pela vegetação mostraram que o processo é altamente heterogêneo
- ☐ É notável que os valores de interceptação, chuva interna e escoamento pelo tronco variam entre as regiões climáticas, mas também entre estudos em uma mesma região
- ☐ Essa variabilidade está em acordo com a suposição de Horton (1919) (entre outros) de que a interceptação depende das características da chuva (condições meteorológicas) e da vegetação

O processo

I - Interceptação - fração de chuva que é evaporada diretamente da copa, não atingindo o solo, dada por:

I = S + E (hipótese de Horton)

Sendo:

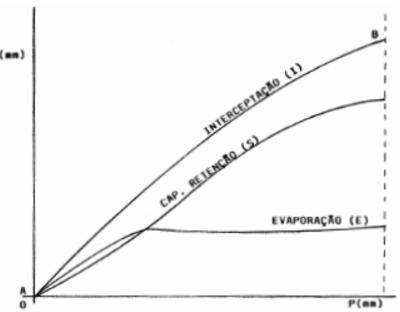
- 5 capacidade de retenção do dossel (ou da folha) quantidade de água que pode ser retida temporariamente na copa (ou folha), antes do início dos processos de Pi e Pt
- E evaporação da água retida na copa
- S e E grandezas que variam ao longo do tempo

Capacidade de armazenamento (S)

- □ No início da chuva, ocorre o armazenamento de água na folha e no dossel
 (5)
- □ Somente depois de S ter atingido seu ponto máximo, começam os processos de escoamento pelo tronco (Pt) e precipitação interna (Pi)
- □ Capacidade de armazenamento (S) é um aspecto importante do processo:
 - ☐ Equilíbrio entre a tensão superficial e a gravidade e depende:
 - Do tipo de folha (vegetação)
 - Das forças externas (clima)

Temperatura: influencia na viscosidade da água

Vento: quebra as forças de adesão

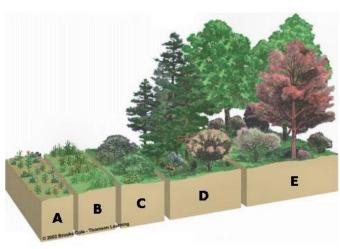

Intensidade da precipitação: influencia nas forças de adesão

- ☐ Maiores valores de 5 ocorrem nas seguintes condições
 - ☐ Espécies com folhas grandes e rugosas
 - ☐ Baixa temperatura do ar
 - ☐ Ausência de ventos
 - ☐ Baixa intensidade de precipitação

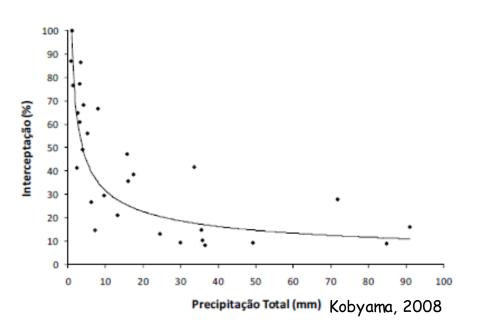
Evolução de E e S

- □Ponto A <u>Início da chuva</u> E representa o componente principal da perda por interceptação
- □Entre A e B À medida em que a chuva continua, a evaporação tende a diminuir devido à alteração das condições microclimáticas (temperatura, gradiente de pressão de vapor, disponibilidade de energia) enquanto a folha passa a reter mais água.
- □Ponto B S atinge seu máximo e, se a chuva continuar, o aumento de I ocorre devido à continuação da evaporação, porém a taxas menores que as iniciais.

Hipótese - interceptação cresce exponencialmente com P até o momento em que S atinge seu máximo. A partir daí, a taxa fica constante e equivalente à taxa de evaporação


O vento pode aumentar a taxa de evaporação

Fatores condicionantes da interceptação


- □ Condições meteorológicas
 □ Precipitação
 □ Altura
 □ Duração
 □ Intensidade
 □ Vento
 □ Temperatura
 □ Umidade do ar
 □ Período do ano (estação seca ou chuvosa)
- □ Características da vegetação
 - □Folha
 - □ Tamanho
 - □ Forma
 - □Rugosidade
 - □ Espécie
 - □Bioma
 - □Sazonalidade
 - □ Densidade

Influência do clima Interceptação x precipitação

- Quanto maior a chuva, menor a interceptação (em termos percentuais)
- Quanto maior a intensidade de chuva, menor a interceptação, para igual volume precipitado: energia com que as gotas de chuva atingem a folha e possível ação vento
- Kuraji et al. (2001): o percentual de perdas por interceptação foi maior no ano com mais eventos de chuva e menor volume total precipitado
- Cuartas et al. (2007): maior quantidade interceptada ocorre nos anos mais secos

Fatores condicionantes do escoamento pelo tronco

- □ Características da chuva: em geral, o escoamento pelo tronco aumenta com a magnitude e diminui com a intensidade da chuva
- □ **Vento**: tende a aumentar o escoamento pelo tronco devido à ação sobre a copa
- Variabilidade entre espécies: estrutura da copa (quantidade, geometria e área projetada dos galhos), características da casca (porosidade, fisiologia, composição química, textura, capacidade de retenção de água e taxa de secagem)
 - ☐ Espécies de tronco liso 5 a 8% da precipitação incidente
 - □ Espécies de casca rugosa 1 a 2% (ou menos) da precipitação incidente

□ Variabilidade inter-específica: árvores mais velhas, em aeral. produzem

menos escoamento pelo tronco

Levia Jr & Frost (2003)

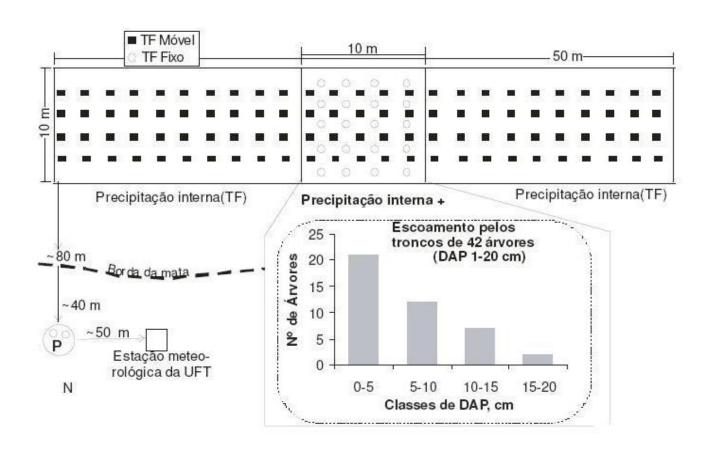
Medida da interceptação

Medida da interceptação

☐ A medida da interceptação é feita de forma indireta, pela diferença da precipitação total e a parcela de chuva drenada através das folhas e troncos

```
Entrada = chuva total (P)
Saída = chuva interna (P_i) e escoamento pelo tronco (P_t)
Diferença = interceptação
I = P - P_i - P_t \Rightarrow medida indireta
```

Variáveis a serem medidas:


P - precipitação total (externa)

P_i - precipitação interna

P_t - escoamento pelo tronco

É necessário usar cerca de 10 vezes mais equipamentos para medição da precipitação que atravessa a vegetação do que para a precipitação total

Exemplo de layout

Coletores móveis minimizam o problema da variabilidade interna

Medida da precipitação interna - Pi

□Podem ser utilizados pluviômetros comuns (interceptômetros) e/ou calhas □ Pluviômetros □ podem conduzir a erros - grande variabilidade espacial da precipitação interna □ alternativa - vários pluviômetros + relocação periódica dentro da parcela □ Calhas □possuem maior área de captação □as chuvas coletadas devem ser conduzidas a um pluviômetro □zinco ou plástico/tamanho varia conforme a necessidade □borda dobrada para dentro, para evitar perda por respingos

□Ideal: Calhas + pluviômetros

Medida da precipitação interna - Pi

Figura 5.4. (a) Instalação de calha para coleta de chuva interna. (b) Detalhe de mangueiras que ligam a calha ao pluviógrafo do tipo báscula. (c) Limpeza da casca para instalação de mangueiras de coleta de escoamento de tronco. (d) Área com medição instalada de chuva interna e escoamento de tronco.

Medida de P, P_i e P_t

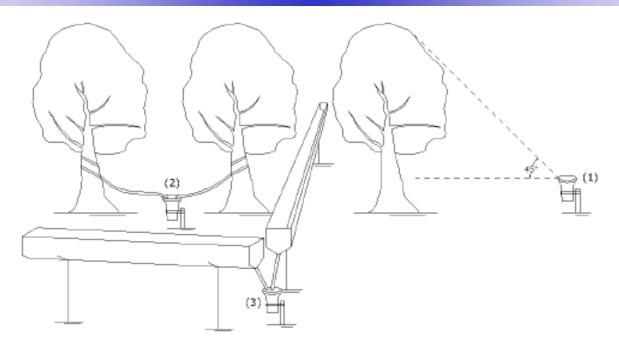
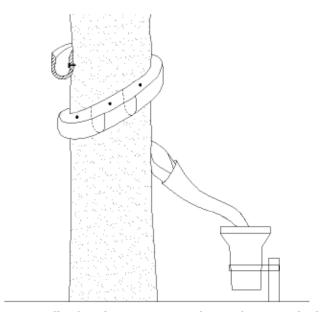


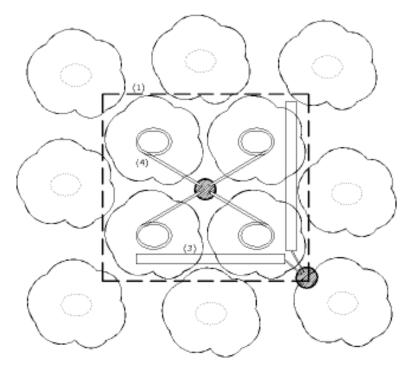
Figura 5.2. (1) Pluviógrafo medindo chuva externa. (2) Pluviógrafo medindo escoamento de tronco. (3) Pluviógrafo medindo chuva líquida coletada pelas calhas.

- (1) pluviógrafo medindo chuva externa,
- (2) Pluviógrafo medindo escoamento de tronco e
- (3) pluviógrafo medindo chuva líquida coletada pelas calhas

Medida do escoamento pelo tronco (P_t)

- □Utilização de uma calha bem vedada em torno da árvore (colar)
- □Chapa final de metal ou mangueira cortada ao meio
- □Uso de pregos e cola de silicone
- □Medição pode ser feita individualmente ou em grupo
- □Coleta em um reservatório
- □Floresta com grande número de árvores pequenas medição é difícil




Figura 5.3. Detalhe de colar no tronco e tubo condutor até pluviógrafo.

Medida do escoamento pelo tronco - Pi

- □ Medem-se diversas árvores em uma parcela e utilizam-se cerca de 5 a 10 parcelas em uma floresta, distribuídas ao acaso
- ☐ Como é feita a transformação do volume de água coletada em cada árvore para a unidade mm de altura de água?
- \square R: Mede-se P_t em <u>todas</u> as árvores de uma parcela pequena e calcula-se o volume total interceptado em relação à área da parcela $[L^3/L^2)$

Croquis

- (1) Área de cálculo para escoamento pelo tronco e pelo dossel
- (2) Pluviômetro para medida da chuva externa
- (3) Calha para medição da chuva interna
- (4) Colar para medição do escoamento pelo tronco

- ☐ Primeiro passo: transformar os volumes medidos em mm
- P_i: dividir o volume de água coletado pela área de coleta da calha, projetada em planta (p.e. litros/m²)
- P₊: dividir o volume escoado pelo tronco pela área de influência aproximada das copas das árvores (p.e. litros/m²)

Estimativa da interceptação

□Equação de Horton (1919)

$$I = S + (A_v/A).E.t_r$$

Onde:

I - quantidade interceptada (mm)

5 - capacidade de armazenamento da vegetação (mm)

 A_v - área da vegetação

A - área total

E - taxa de evaporação (mm/h)

 t_r - duração da precipitação em horas

Estimativa de S

- □O índice de área foliar (IAF) é a relação entre a área das folhas
 todas as folhas da vegetação de uma região e a área projetada
 no solo
- □Um valor de IAF igual a 2, por exemplo, significa que cada m² de área de solo está coberto por uma vegetação em que a soma das áreas das folhas individuais é de 2m²

Tipo de cobertura	IAF	Fonte
Coníferas	6	Bremicker (1998)
Floresta decídua	6 *	Bremicker (1998)
Soja irrigada	7,5*	Fontana et al. (1992)
Soja não irrigada	6,0*	Fontana et al. (1992)
Floresta amazônica	6 a 9,6*	Honzák et al. (1996)
Pastagem amazônica (estiagem)	0,5	Roberts et al. (1996)
Pastagem amazônica (época úmida)	3,9	Roberts et al. (1996)
Savana Africana (região semi-árida -Sahel)	1,4*	Kabat et al. (1997)
Cerrado (estiagem)	0,4	Miranda et al. (1996)
Cerrado (época úmida)	1,0	Miranda et al. (1996)

Equação com base no IAF

□ A lâmina interceptada durante um evento de chuva pode ser estimada com base no valor do IAF para uma dada vegetação através da equação

$$S = F_i \times IAF$$

Onde:

S - capacidade de armazenamento da folha (mm)

 F_i - parâmetro de interceptação (F_i = 0,1 a 0,7mm)

Exemplo: Um evento de chuva de 15mm atinge uma bacia com cobertura vegetal de floresta. Qual é a capacidade de armazenamento da vegetação, considerando-se que F_i = 0,2 e IAF = 6?

 $S = 0.2 \times 6 = 1.2 \text{mm}$ (capacidade de interceptação)

Como a chuva foi de 15mm, a capacidade total de armazenamento foi atingida. Portanto, 1,2mm é o total precipitado e 13,8mm é a precipitação que atinge a superfície do solo (precipitação interna)