Master of Science in Geospatial Technologies

Geostatistics
Predictions with Deterministic Procedures

Carlos Alberto Felgueiras
cfelgueiras@isegi.unl.pt
Predictions with Deterministic Procedures

Contents

Deterministic Predictions

Introduction
Deterministic x Stochastic Methods
Global Estimators
Local Estimators
Digital Terrain Models
Rectangular Grids with Local Mean Interpolators
Triangular Irregular Networks
Rectangular grids from TIN
Rectangular Grid x Tin Comparison
Problems with Deterministic Estimators
Predictions with Deterministic Procedures

- Introduction – Interpolation from Samples – General Idea
Predictions with Deterministic Procedures

• Introduction - General Concepts

Point Predictions, Estimations or Interpolations:

• Using estimation procedures over sample information in order to calculate z values at unsampled locations.

• Defining mathematical models that allow performing attribute predictions at any location of a region of the earth surface.

Spatial Interpolation Methods

• Deterministic x Stochastic Methods

• Global x Local Methods
Predictions with Deterministic Procedures

Deterministic x Stochastic Methods

• **Deterministic**
 • The $z^*(u)$ value is estimated as a **Deterministic Variable**. An unique value is associated to its spatial location.
 • No uncertainties are associated to the estimations

• **Stochastic**
 • The $z^*(u)$ value is considered a **Random Variable** that has a *probability distribution function* associated to its possible values
 • Uncertainties can be associated to the estimations

\[
z^*(u) = K
\]
Predictions with Deterministic Procedures

Global Estimations

- Use of only one mathematical model, generally a polynomial, to represent the attribute variation for the hole area.

- Difficulties to represent erratic (complex) attribute variations. Show only the general tendencies, filtering details. Problems with polynomial oscillations.

- Used mostly in engineering projects for modeling smooth curves and surfaces.

- Examples: polynomials, splines (exact), bezier, ...

\[Z = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0 \quad n>0 \]

(use best fit to the samples criteria)
Predictions with Deterministic Procedures

Local Estimators

- Use local neighborhood to determine the closer local samples to be taken into account in the interpolation.

- Polynomials are applied locally, using only the closer samples.

- Problems with continuity must be considered.

- Criteria for neighborhood definition
 - Number of closer samples? How many?
 - Distance from the location to be interpolated? How far?
 - What is better?

Closer samples for local estimation
Predictions with Deterministic Procedures

- Digital Terrain Models (DTM or DEM for elevations)

GRID x TIN: Usually predictions are used in GIS to create rectangular and triangular mesh structures – Digital Terrain Representations

Rectangular Regular Networks (Grid or Image)

Triangular Irregular Networks (TIN)

○ sample locations + estimation locations
Predictions with Deterministic Procedures

- Rectangular Grids with Local Mean Interpolators
 - General equation for estimating each grid point at location \(\mathbf{u} (x_u, y_u) \)

 \[
 z_u^* = \frac{\sum_{\alpha=1}^{n} W_{\alpha u} z_{\alpha}}{\sum_{\alpha=1}^{n} W_{\alpha u}}
 \]

 \(z_u^* \) is the spatial location of \(z^* \)
 \(n \) is the number of samples inside \(r \)
 \(w_{\alpha u} \) is the weight of sample \(\alpha \) at location \(u \)

 Interpolators:
 - **Nearest Neighbor** when \(n = 1 \)
 - **Simple Means** when \(w_{\alpha u} = 1 \)

Closer samples for estimation a \(z^* \) value at a grid location
Predictions with Deterministic Procedures

- **Rectangular Grids with Local Mean Interpolators**

 - General equation for estimating each grid point at location \(u \)
 \[
 Z_u^* = \frac{\sum_{\alpha=1}^{n} W_{\alpha u} Z_\alpha}{\sum_{\alpha=1}^{n} W_{\alpha u}}
 \]

 \(W_{\alpha u} \) is the weight of sample \(\alpha \) at location \(u \)

 Interpolators:
 - **IDW** - Inverse Distance Weighted when
 - **IDW Optimized (Quadrants)**

 \(d_{\alpha u} \) is the Euclidean distance between sample \(\alpha \) and location \(u \)

 \(k \) is the power of the distance \(d_{\alpha u} \)

 \[
 w_{\alpha u} = \frac{1}{d_{\alpha u}^k}
 \]

 \[
 d_{\alpha u} = \sqrt{(x_\alpha - x_u)^2 + (y_\alpha - y_u)^2}
 \]
Predictions with Deterministic Procedures

- Rectangular Grids with Local Mean Interpolators

IDW Optimized (Quadrants)

- The space is split in 4 quadrants relative to the interpolation location.

- Only 1 (or 2, ..., or \(n \)) closer sample(s) of each quadrant is considered for the interpolation.

- This optimization avoid using clustered samples

- Some authors suggest split the space in octants (or more ants).

Important: The \(z \) variation inside each rectangle of a rectangular grid can be modelled by bilinear, bicubic or other patch function.
Predictions with Deterministic Procedures

- Rectangular Grids with Local Mean Interpolators

Study Area

Sample Set

Deterministic Procedures

Nearest Neighbors

Dirichlet Map

Simple Means

Inverse Distance Weighted
Predictions with Deterministic Procedures

- **Triangular Irregular Networks - TIN**

 - The samples are connected in order to form a triangular partition in the region of the samples.

 - The mesh is created using the samples location as the vertices of the triangles. So, there is no interpolations in the process of the TIN construction

 - TIN is adaptative: Bigger triangles represent homogeneous regions and smaller ones represent more erratic areas.

 - Problem: Given a set of n samples it is possible to construct many different triangulations. How to compare different triangulations? What is the better triangulation for a given sample set?

Two different TIN for a same sample set
Predictions with Deterministic Procedures

• TIN – The Delaunay Triangulation

• The Delaunay triangulation is the most used TIN in DTM modeling.

• Circumcircle criterion: “Given the points pa, pb and pc ∈ the Sample Set P where a ≠ b ≠ c, a T is a Delaunay triangulation only and if only ∀ t ∈ T, with vertices at pa, pb and pc, the circumcircle formed by the vertices of t does not contain any other point PD ∈ P / d ≠ a ≠ b ≠ c”.

• Uses the circumcircle criteria to define the triangles of an unique triangulation.

• Avoid creation of very thin triangles. Create triangles more closer to equilateral triangles

• Important: The z variation inside each triangle can be modeled by linear, cubic, quintic or other function.
Predictions with Deterministic Procedures

• TIN - The Delaunay Triangulation with constraints

TIN with constraints

Constraints lines are lines that represent morphological characteristics of the surface and cannot be “broken” by triangles sides.

It is possible to include constraint information (break lines) to be considered in the TIN construction process.

This is important for getting better representations for attributes presenting morphological structures (e.g., elevations).
Predictions with Deterministic Procedures

• Grid from TIN

Given a TIN it is possible to calculate a rectangular grid for the same region.

Algorithm:

For each \(u \) grid location{

Find the triangle \(t \) that contains \(u \)

Calculate the \(z \) grid value at \(u \) using a linear (or other) function fitting \(t \)

}

Obs. If the \(u \) location is out of any triangle the location is associated to a dummy (not valid) value.

It is also possible to construct a TIN from a rectangular GRID. How?
Predictions with Deterministic Procedures

• Grid x TIN comparison (table?)

<table>
<thead>
<tr>
<th></th>
<th>TIN</th>
<th>Rectangular Grid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>1. Better to represent attributes with complex spatial variations</td>
<td>1. Easy structures and algorithms to be manipulated in computers</td>
</tr>
<tr>
<td></td>
<td>2. Allows incorporation of constraints (topographic top and bottom lines)</td>
<td>2. Better for qualitative analysis (visual)</td>
</tr>
<tr>
<td></td>
<td>3. Better for quantitative analysis (measures, slope evaluation, volume calculations, etc....)</td>
<td>3. Suitable for visualization with planar projections</td>
</tr>
<tr>
<td>Problems</td>
<td>1. More complex structures and algorithms to be manipulated</td>
<td>1. Representation of attributes with complex variations</td>
</tr>
<tr>
<td></td>
<td>2. Not suitable for visualizations with planar projections</td>
<td>2. Not suitable for quantitative analysis (loss of details)</td>
</tr>
</tbody>
</table>
Predictions with Deterministic Procedures

- Examples Rectangular Regular applications (visualizations)
Predictions with Deterministic Procedures

- Examples of TIN applications (evaluations)

Visibility Analysis

Profiles Determination

Slope Maps

Graph

- Perfil - 1
- Perfil - 2
Predictions with Deterministic Procedures

- Problems with deterministic procedures

 If the sample set is well distributed and too dense all the interpolators (deterministic or stochastic) perform satisfactory.

 Deterministic procedures do not perform well when
 - the set has few samples
 - the set present clusters of samples
 - the spatial continuity of the attribute is not isotropic

 For Rectangular Grid Modeling
 - Problems: Few samples, definition of radius of influence, number of neighbors and exponential parameter for IDW estimators.

 For TIN Modeling
 - Problem: How triangles must be considered for estimation inside a triangle?
Summary and Conclusions

- Deterministic estimators can be used to model spatial data.
- Current GISs allow users to work with these tools mainly to Digital Terrain Modeling (DTM) tasks.
- Deterministic estimators perform better when the sample set is dense.
- When the sample set has few elements, the deterministic models usually present some undesirable artifacts in their representations.
- The user should always take care of (be worried with) the parameters used in deterministic estimations (black box).
- Usually, deterministic modeling is not followed with uncertainty information about the performed estimations.
Predictions with Deterministic Procedures

Exercises

1. Run the Lab2 already available in the geostatistics course area of ISEGI online.

2. Given the following sample configuration estimate z values for the \(u \) location using the deterministic procedures (local means and TIN) you have learn in this presentation.

3. Report the results and advantages, or disadvantages, of each one.

4. In your opinion which one of the estimates procedures performs better to estimate the \(z \) value at the location \(u \).

5. Send the reporter to the e-mail of the geostatistics professor before 25/10/2007.
Predictions with Deterministic Procedures

END

of Presentation