CBERS-2

Attitude Control and its Effects on Image Geometric Correction

Topics for discussion

■ Image positioning errors change depending on which country controls the satellite

- Known issues about CBERS-2 attitude data
\square Attitude angles transmitted in X-band (to the image receiving station) and S-band (to the TT\&C station) are exactly the same
\square Transmitted attitude angles are too small
\square IRES output data are significant
\square IRES output data change according to the controlling side
- Use of attitude post-processed on ground
\square Attitude data computed from IRES and DSS data
\square Attitude data computed from the integration of angular velocities estimated onboard

Topics for discussion

■ Attitude issues that require further analysis

\square Transmitted attitude angles do not match the values estimated on ground from IRES and DSS data
\square Definition of the best attitude data for image processing of CBERS-2 and CBERS-2B
\square What is the influence of ephemeris data sets uploaded from Brazil and China on the onboard determination of attitude?
\square What are the impacts of a similar attitude control on the time-delay integration of CBERS-2B HRC camera?

How did we come up with this?

\square Systematic evaluation of CBERS-2 images by INPE
\square Presentation to CRESDA in Beijing (October, 2004)
\square Presentation in the Brazilian Remote Sensing Symposium (April, 2005)
\square Presentation to CRESDA in São José dos Campos (June, 2005)
\square Continuous interaction with CBERS users in Brazil
■ Cooperative investigation among CBERS segments at INPE
\square Application
\square Control
\square Space

Background

- Previous geometric evaluations of CBERS-2 positioning error

DATE	$\Delta \mathrm{X}(\mathrm{km})$	$\Delta \mathrm{Y}(\mathrm{km})$	RESULTANT (km)
17-Dec-2003	-7.4	+7.7	10.7
30-Mar-2004	-11.8	+5.0	12.8
21-May-2004	-9.7	+4.3	10.6
12-Jul-2004	-10.0	+3.7	10.7
02-Sep-2004	-2.5	+4.1	4.8
05-Feb-2005	+0.7	+4.2	4.3
29-Mar-2005	-8.4	+8.2	11.7
20-May-2005	-7.6	+3.2	8.2

Background

■ Correlation between Δx error and roll angle from IRES

$$
\longrightarrow \text { CCD } X \longrightarrow \text { XSCC }->\text { INPE } \longrightarrow \text { INPE }->X S C C ~ — — I R E S ~ R O L L ~ X ~-13.57866158 ~
$$

Background

■ Correlation between $\Delta \mathrm{y}$ error and pitch angle from IRES

$$
\longrightarrow C C D Y=\text { XSCC->INPE } \longrightarrow \text { INPE->XSCC ———IRES PITCH } \times 13.57866158
$$

Attitude investigation

- Attitude was tested around the last control transition from Brazil to China
\square March 20, 21, 23, 25, and 26, 2005
\square CCD 153/111, 160/101, 162/102, 169/105, 187/116
\square Bore-sight $(x)=$ bore-sight $(z)=0$; bore-sight $(\mathrm{y})=-1.923 \mathrm{e}-2$ radians
- Test 1
\square Transmitted attitude and ephemeris data computed from TLEs
■ Test 2
\square Post-processed attitude (computed from IRES and DSS data) and ephemeris data computed from TLEs

Test 1

■ Positioning error with transmitted attitude and ephemeris data computed from TLEs

DATE	$\Delta \mathrm{X}(\mathrm{km})$	$\Delta \mathrm{Y}(\mathrm{km})$	RESULTANT (km)
20-Mar-2005	-0.5	+4.2	4.2
21-Mar-2005	-0.6	+3.2	3.3
23-Mar-2005	-7.5	+4.8	8.9
25-Mar-2005	-9.1	+7.4	11.7
26-Mar-2005	-10.3	+6.7	12.3

Test 1 on March 20, 2005

Test 1 on March 21, 2005

Test 1 on March 23, 2005

(0)
 Test 1 on March 25, 2005

Test 1 on March 26, 2005

Test 2

\square Positioning error with post-processed attitude and ephemeris data computed from TLEs

DATE	$\Delta \mathrm{X}(\mathrm{km})$	$\Delta \mathrm{Y}(\mathrm{km})$	RESULTANT (km)
20-Mar-2005	-4.4	-2.1	4.9
21-Mar-2005	-5.0	-3.5	6.1
23-Mar-2005	-6.0	-2.6	6.5
25-Mar-2005	-4.7	-2.9	5.4
26-Mar-2005	-5.6	-1.5	5.8

Test 2 on March 20, 2005

Test 2 on March 21, 2005

Test 2 on March 23, 2005

Test 2 on March 25, 2005

Test 2 on March 26, 2005

Arquivo Editar Exibir Imagem Iernático MNT Cadastral Elede Análise Executar Eerramentas Ajuda
目| (

Synthesis of attitude tests

- Test 1 - transmitted attitude

March 20, 2005

March 21, 2005

March 25, 2005

March 26, 2005

■ Test 2 - post-processed attitude

March 20, 2005

March 21, 2005

March 25, 2005

March 26, 2005

Telemetry data analysis

■ Statement 1: Apparently the attitude telemetry data have discrepancies

\square Telemetry data inform that the attitude angles are (most of the time) smaller than 0.05 degree
\square Image positioning errors indicate that the attitude angles might be bigger than the telemetry data
\square The IRES show angles of different magnitude when the control is handed over between China and Brazil
\square The integration of angular velocity telemetry is not consistent with the attitude angle telemetry

Telemetry data analysis

■ Statement 2: The pointing errors may be

 out of specification\square The image location analysis shows errors ranging from 0.5 to 10 km
\square Image location errors around 5 km correspond to the specified pointing accuracy of 0.3 degree
\square The IRES data show absolute values close to 0.8 degree which are compatible to the image location errors
\square The IRES output "changes" after control center handover
\square The IRES bias (installation error) "changes" after control center handover

Attitude behavior

Discrepancy between roll and roll-rate estimates and other telemetry

Discrepancy between yaw and yaw-rate estimates and other telemetry

Attitude behavior

IRES roll-axis bias before and after switching the control handover on March 23rd

Image effects

Image Positioning Error

	Test 1: OB-OrbAt		Test 2: Ground-OrbAt estimating IRES Bias		Test 3: Ground-OrbAt considering zero bias		Test 4: test 3 + rate integration	
Date	$\Delta X(\mathrm{~km})$	$\Delta Y(\mathrm{~km})$						
20/03/2005	-0.5	4.2	-4.4	-2.1	-6.1	8.4	-5.5	9.7
21/03/2005	-0.6	3.2	-5.0	-3.5	-5.8	7.8	-5.5	10.0
23/03/2005	-7.5	4.8	-6.0	-2.6	-6.8	7.3	-7.3	7.6
$\mathbf{2 5 / 0 3 / 2 0 0 5}$	-9.1	7.4	-4.7	-2.9	-6.0	8.1	-6.3	10.3
26/03/2005	-10.3	6.7	-5.6	-1.5	-6.7	8.4	-7.0	9.6

Image effects

Test 1

March 20, 2005

Test 2

March 21, 2005

March 21, 2005

March 21, 2005

March 21, 2005

March 25, 2005

March 25, 2005

March 25, 2005

March 25, 2005

March 26, 2005

March 26, 2005

March 26, 2005

March 26, 2005

Image Location Error

Image effects

Predicted errors due to Bias

	Bias	Bias	Longitude Error		Latitude Error		Angular Error		Linear Error	
Date	roll (. ${ }^{\text {(})}$	pitch (${ }^{(0)}$	roll (${ }^{(0)}$	pitch (${ }^{(0)}$	roll (.0)	pitch (. ${ }^{\text {(}}$)	Long (${ }^{\circ}$)	Lat (.0)	Long (km)	Lat (km)
20/03/2005	-0.20	-0.77	-0.198	-0.114	-0.030	0.762	-0.312	0.732	-4.2	9.9
21/03/2005	-0.17	-0.79	-0.168	-0.117	-0.025	0.781	-0.285	0.756	-3.9	10.3
23/03/2005	-0.08	-0.69	-0.079	-0.102	-0.012	0.682	-0.181	0.671	-2.5	9.1
25/03/2005	-0.18	-0.77	-0.178	-0.114	-0.027	0.762	-0.292	0.735	-4.0	10.0
26/03/2005	-0.16	-0.74	-0.158	-0.109	-0.024	0.732	-0.268	0.708	-3.6	9.6

$■$ On ground roll estimation

Image effects

■ On ground pitch estimation

Image effects

■ On ground yaw estimation
\square Not relevant in the present analysis
\square The quantization of DSS telemetry is only 2 bytes
\square The accuracy of yaw attitude determination is worse than the accuracy of roll and pitch attitude determination

Final comments

- The analysis is based on
\square Image positioning errors
\square On ground attitude determination
■ Image positioning errors using attitude telemetry
\square Longitude errors from 0.5 km to $10.3 \mathrm{~km}(\Delta=9.8 \mathrm{~km})$
\square Latitude errors from 3.2 km to $7.4 \mathrm{~km}(\Delta=4.2 \mathrm{~km})$
■ Image positioning errors using on ground attitude estimates
\square Longitude errors from 4.4 km to $6.0 \mathrm{~km}(\Delta=1.6 \mathrm{~km})$
\square Latitude errors from 1.5 km to $3.5 \mathrm{~km}(\Delta=2.0 \mathrm{~km})$

Final comments

■ On ground attitude determination
\square Roll angle values ranging from -0.3 to +0.4 degree
\square Pitch angle values ranging from 0.4 to +0.65 degree

- Suggested actions
\square Ensure consistency between ephemeris data uploaded from both control centers
\square Analyze the impact on CBERS-2B
\square Analyze the possibility of improving attitude sensors telemetry data accuracy

Obrigado

Thank you

