

MINISTÉRIO DA CIÊNCIA E TECNOLOGIA INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Geometric Quality Assessment of CBERS-2

Julio d'Alge Ricardo Cartaxo Guaraci Erthal

Contents

- Monitoring CBERS-2 scene centers
 Satellite orbit control
- Band-to-band registration accuracy
 Detection and control
- System-corrected images (level 2)
 - □ What to expect of such images?
 - Internal error ... attitude data
 - Positioning error ... ephemerides and attitude data
- Geometric quality of CBERS-2 images

Images used in the assessment

6 CCD scenes, 159/121, UTM, SAD69

- December 17, 2003; March 30, 2004; May 21, 2004; July 12, 2004;
 September 02, 2004; February 05, 2005
- 6 IRMSS scenes, 159/121, UTM, SAD69
 - December 17, 2003; March 30, 2004; May 21, 2004; July 12, 2004;
 September 02, 2004; February 05, 2005

3 WFI scenes, 159/124, Lambert Conformal Conic, SAD69

November 04, 2003; March 30, 2004; September 02, 2004

2 ortho-rectified ETM images, UTM/WGS84

Circa 2000

Images used in the assessment

CCD

WFI

IRMSS

Geographic position of scene centers

- WRS path and row are transformed into nominal geographic coordinates
- Geographic coordinates of scene centers are computed through the geometric correction process
- Differences between real and nominal geographic coordinates are calculated
 - December 17, 2003 -28km (to west)
 - March 30, 2004 -39km (to west)
 - May 21, 2004 -21km (to west)
 - July 12, 2004 +5km (to east)
 - September 02, 2004 +4km (to east)
 - February 05, 2005 +2km (to east)
- Orbit control and longitudinal drift at equator

Longitudinal drift at equator computed in the CBERS-2 Control Center Facility at INPE

Longitudinal drift at equator computed in the CBERS-2 Control Center Facility at INPE

- Band-to-band mismatch is estimated by an intensity interpolation method
 - Reference and search windows are defined by sub-images that are resampled to 1/11 of the original pixel size
 - Cubic convolution interpolation function (α = -0.5)
 - Reference and search windows are overlaid in all possible positions to determine similarity on selected control points
 - Normalized cross-correlation
 - Matching position at each control point is determined by the maximum similarity value
 - Spatial distance between any reference window and the corresponding matching position defines the band-to-band mismatch

Example of control points

Estimation of CCD band-to-band registration

Estimation of CCD band-to-band registration

Estimation of CCD band-to-band registration

Visual estimation of band-to-band registration

CCD bands 1 and 4

IRMSS bands 1 and 2

Estimated mismatches are corrected in the CBERS Processing Station

System-corrected images (level 2)

Ephemerides

Satellite position and velocity on time t

Attitude data and instrument

Viewing direction on time t

Intersection with earth reference ellipsoid

- Geographic coordinates of pixel acquired on time t
- Image remapping to a map projection reference system

System-corrected images (level 2)

Internal accuracy

- Relative position of pixels with respect to a map projection system
- LANDSAT TM/ETM and SPOT HRV/HRG have established the standards
 - Mean error of 1.5 pixel
- Accurate attitude data
- A good internal accuracy allows users to easily integrate images, maps, and other geographic data sources

System-corrected images (level 2)

Positioning accuracy

- Global displacement of the image with respect to the earth surface
- LANDSAT TM/ETM and SPOT HRV/HRG have established the standards
 - Mean error of 1,500m for LANDSAT-5
 - Mean error of less than 350m for SPOT-5
 - Mean error of less than 200m for LANDSAT-7
- Accurate ephemerides and attitude data

The positioning accuracy defines how far an image is from its true position

Internal and positioning accuracy

System-corrected CCD, IRMSS, and WFI images were imported to a common GIS database

 NASA (ESAD) ortho-rectified ETM images were imported to the same GIS database
 GeoTIFF converted from MrSID
 UTM, WGS84

 CBERS-2 and LANDSAT-7 images were remapped to a common reference system
 Lambert Conformal Conic, WGS84

Internal and positioning accuracy

Internal accuracy estimation

Measurement of control points

- Control points were selected manually (automatic selection is under development)
- Map projection coordinates were measured on both CBERS-2 and LANDSAT-7 images
- Geometric transformations
 - Similarity and orthogonal-affine transformations were used in the assessment
 - Affine transformation was used to investigate image registration possibilities
- Coordinates calculated through the transformations were compared to the coordinates provided by the reference LANDSAT ETM image
- □ Differences were used to compute the internal accuracy

Internal and positioning accuracy

Positioning accuracy estimation

Measurement of control points

- Control points were selected manually (automatic selection is under development)
- Map projection coordinates were measured on both CBERS-2 and LANDSAT-7 images
- Displacements along north-south and east-west directions were calculated by subtracting CBERS-2 coordinates from the reference LANDSAT ETM coordinates
 - Average north-south displacement (ΔY)
 - Average east-west displacement (ΔX)
- The resultant of average displacements defines the positioning accuracy
 - $[(\Delta X)^2 + (\Delta Y)^2]^{0.5}$

Internal accuracy estimation

INSTRUMENT	TRANSFORMATION	RMSE_X (m)	RMSE_Y (m)	RMSE (m)
CCD	Similarity	79	77	110
	Orthogonal-affine	50	45	67
	Affine	24	20	31
IRMSS	Similarity	115	126	170
	Orthogonal-affine	108	110	154
	Affine	28	17	33
WFI	Similarity	708	668	973
	Orthogonal-affine	661	316	733
	Affine	618	272	676

Internal accuracy estimation

INSTRUMENT	LENGTH DISTORTION	ANISOMORPHISM
CCD	0.998	0.996
IRMSS	0.999	1.003
WFI	1.008	1.008

Positioning accuracy estimation

DATE	∆X (km)	∆Y (km)	RESULTANT (km)
December 17, 2003	← -7.4	† +7.7	10.7
March 30, 2004	← -11.8	† +5.0	12.8
May 21, 2004	← -9.7	† +4.3	10.6
July 12, 2004	← -10.0	† +3.7	10.7
September 02, 2004	← -2.5	† +4.1	4.8
February 05, 2005	→ +0.7	† +4.2	4.3

- Changes in the geographic position of scene centers must be continuously monitored by the CBERS-2 Control Center Facilities in Brazil and China
- A certain WRS scene should always cover the same portion of the earth surface
- CBERS-2 WRS must be a reliable image search tool for remote sensing users

- INPE is investigating the band-to-band registration issue through a more comprehensive analysis of CCD images
- Band-to-band mismatches have been detected and corrected accordingly in the CBERS station at INPE
- Additional study is also required to verify the occurrence of displacements between arrays of detectors

- Internal accuracies of 110m for CCD, 170m for IRMSS, and 973m for WFI images do not follow the standards set by TM/ETM and HRV/HRG images
- But ... results of the affine transformation indicate that image registration is feasible
 - □ Suggested maximum scale for CCD is 1:100,000
 - □ Suggested maximum scale for IRMSS is 1:250,000
 - □ Suggested maximum scale for WFI is 1:1,500,000
 - An error still remains along the east-west direction after WFI images have been registered by an affine transformation

INPE is investigating the generation of fully corrected images by automatic registration with ETM ortho-rectified image data

CCD registered with ETM

IRMSS registered with ETM

IRMSS forward and reverse scans

- Mismatch between forward and reverse scans on the extremities of the images
- Current behavior of IRMSS mirror profile is different from the expected nominal profile?

- CRESDA (China) has proposed an adjustment method that slightly changes time for each segment of the scan mirror profile
 - Read some lines of image raw data, get number of pixels in each segment, and compute scan time for each segment
 - Fit the scan mirror profile to the relative mirror angles of the instrument using a third order polynomial
 - □ Readjust the scan mirror angles for each segment
 - □ Offset is about (4.4/1536)^o per pixel
 - □ Forward mirror profile after adjustment
 - $f(t) = -2.19448 + 59.85849t 27.15604t^2 + 222.16511t^3$
 - □ Reverse mirror profile after adjustment
 - $f(t) = 2.19388 59.3667t + 1.65016t^2 38.1988t^3$

IRMSS forward and reverse scans after adjustment by the CRESDA method

Image orientation to the north

- True north direction and the north direction calculated by the geometric correction process should be the same
- All tests detected a little misalignment (2 ~ 6 pixels) between the axes of the map projection system that is computed in the geometric correction process and the axes of the reference map projection system
- Presence of bore-sight angles?
- □ Inaccurate attitude data (yaw)?
- □ INPE is investigating the problem
- However ... image registration by an affine transformation fixes the problem

- Positioning accuracy between 4 and 12km does not follow standards set by LANDSAT and SPOT
- However ... a positioning error, no matter it is 10km or 350m, always implies an external registration procedure

- Positioning accuracy can be improved by the use of post-processed ephemerides
- Tests have been made that account for:
 - Presence of unexpected bore-sight and attitude angles
 - □ Computation of a bias-matrix

Conclusion

- Current developments towards ensuring a good geometric quality for CBERS-2 images
 - Careful control of satellite orbit to avoid unacceptable longitudinal drifts
 - Systematic verification of the band-to-band registration accuracy
 - Use of post-processed ephemerides generated at a regular basis in the CBERS-2 Control Center Facility at INPE
 - Refinement of attitude data by using control points
 - Computation of bore-sight angles by using control points
 - Use of automatic registration techniques to generate fully corrected images

