

Correção Geométrica de Imagens de Sensoriamento Remoto

Julio Cesar Lima d'Alge

Correção Geométrica

Introdução

- A visão clássica de pré-processamento
- Etapas da correção geométrica

Distorções geométricas

- Distorções que afetam a geometria das imagens
- Satélite, sensor, Terra
- Modelos de correção
 - Correção de sistema, métodos polinomiais
 - Qualidade geométrica das imagens corrigidas

Correção Geométrica

Importância

- Eliminação de distorções sistemáticas
- Integração de dados em SIG
- Requisitos
 - Escolha do modelo de correção adequado
 - Avaliação e validação de resultados
- Aspectos interdisciplinares
 - Processamento digital de imagens
 - Projeções cartográficas e SIG

Correção Geométrica

Mapeamento direto (T)

 Transforma coordenadas de imagem bruta (C,L) em coordenadas de referência (X,Y)

Mapeamento inverso (T⁻¹)

 Transforma coordenadas de referência (X,Y) em coordenadas de imagem bruta (C,L)

Reamostragem (interpolação)

Calcula os níveis de cinza da imagem corrigida

Mapeamento direto (T)

Aplicação da transformação T a uma grade regular de pontos sobre a imagem bruta

• $(X_1, Y_1), (X_2, Y_2), \dots, (X_N, Y_N)$

Definição do retângulo envolvente no sistema de referência

• $(X_{\min}, Y_{\min}), (X_{\max}, Y_{\max})$

 Definição do sistema de coordenadas (J,I) e da resolução da imagem corrigida

Mapeamento inverso (T⁻¹)

- Associação de uma grade regular de pontos sobre a imagem corrigida a uma grade irregular sobre a imagem bruta
- O uso de polinômios é comum nos casos em que T não é inversível
 - $C = a_0 + a_1I + a_2J + a_3I^2 + a_4IJ + a_5J^2 + ...$
 - $L = b_0 + b_1 I + b_2 J + b_3 I^2 + b_4 I J + b_5 J^2 + ...$
 - a_i e b_i são determinados a partir do resultado do mapeamento direto

Mapeamentos direto e inverso

Reamostragem (interpolação)

Vizinho mais próximo

 Usa o nível de cinza mais próximo ao resultado do mapeamento inverso

Bilinear

 Usa três interpolações lineares sobre os quatro pixels que cercam o resultado do mapeamento inverso

Convolução cúbica

 Usa cinco interpolações polinomiais do terceiro grau sobre os dezesseis pixels que cercam o resultado do mapeamento inverso

Reamostragem VMP

Reamostragem Bilinear

Reamostragem CC

Distorções geométricas

Distorções inerentes à plataforma

Efemérides (posição e velocidade) e atitude

Distorções inerentes ao instrumento

- Sensores de varredura mecânica
- Sensores de varredura eletrônica

Distorções inerentes ao modelo da Terra

- Rotação e esfericidade
- Relevo

Efemérides

Variação da velocidade

- Causa superposições e lacunas entre varreduras sucessivas
- Variação de escala no sentido transversal às varreduras
- Variação da altitude
 - Variação de escala ao longo das varreduras

Variação da velocidade

(Machado e Silva, 1989)

14

Variação da altitude

Atitude

Variação do ângulo de rolamento (roll)

 Provoca o não alinhamento de varreduras consecutivas

Variação do ângulo de arfagem (pitch)

 Provoca superposições ou lacunas entre varreduras consecutivas

Distorção provocada pela guinada (yaw)

- Falta de alinhamento das varreduras
- Superposições ou lacunas ... efeito de "leque"

(Machado e Silva, 1989)

Variação de pitch

(Machado e Silva, 1989)

Distorção devido ao yaw

Cisalhamento da varredura

- Movimento simultâneo entre o satélite e o espelho
- Variação do tempo útil de varredura
 - Variação no número de elementos amostrados
 - Reamostragem linear ao longo de cada varredura
- Distorção panorâmica
 - Compressão nos pixels distantes do nadir
- Deslocamento entre bandas e detetores

Número inteiro de elementos de imagem

Cisalhamento da varredura

(Machado e Silva, 1989)

Distorção panorâmica

(Machado e Silva, 1989)

Deslocamento entre bandas

Deslocamento entre detetores

(Machado e Silva, 1989)

Sensores de varredura eletrônica

Deslocamento entre bandas

- Bandas são registradas automaticamente
- Precisão da ordem de 0.15 pixel (HRV-SPOT)

Deslocamento entre barras de detetores

- Efeito compensado pela leitura de varreduras consecutivas
- Desalinhamento das barras de detetores

Distorção inferior a 0.1 pixel (HRV-SPOT)

Sensores de varredura eletrônica

Deslocamento entre barras de detetores

	I		1
I	2	I	2
2	3	2	3
3		3	

Sensores de varredura eletrônica

Desalinhamento das barras de detetores

Distorções inerentes à Terra

Rotação da Terra

- Deslocamento entre varreduras sucessivas devido ao movimento de rotação da Terra
- 30m por varredura (TM-LANDSAT)
- Esfericidade da Terra
 - Distorção panorâmica
- Deslocamento devido ao relevo
 - Visadas inclinadas ... orto-retificação
 - Afeta imagens de sensores de alta resolução

Rotação da Terra

(Machado e Silva, 1989)

Esfericidade da Terra

Deslocamento devido ao relevo

Modelos de correção geométrica

Modelos polinomiais (registro)

 Usam funções polinomiais determinadas através de pontos de controle

Modelo de correções independentes

 Fontes de distorção são analisadas e modeladas de forma independente

Modelo fotogramétrico

 Usa informações orbitais do satélite e parâmetros do sensor para relacionar um ponto da imagem com seu correspondente no terreno

- As coordenadas de imagem bruta (C,L) são relacionadas às coordenadas de referência (X,Y) através de polinômios de grau n
 - $X = a_0 + a_1L + a_2C + a_3L^2 + a_4LC + a_5C^2 + ... + a_mC^n$
 - $Y = b_0 + b_1L + b_2C + b_3L^2 + b_4LC + b_5C^2 + ... + b_mC^n$
 - m = ((n + 1)(n + 2)/2) 1
 - O par (X,Y) normalmente representa as coordenadas planas de um certo sistema de projeção cartográfica

- Modelos polinomiais permitem que se use diretamente o mapeamento inverso
- Coordenadas do sistema de referência (X,Y) são discretizadas para gerar o sistema de coordenadas de imagem corrigida (J,I)
- Deve-se conhecer o número de linhas e de colunas da imagem corrigida, a resolução espacial e o ângulo de orientação

(Machado e Silva, 1989)

■ J =
$$[(X - X_c)\cos\alpha - (Y - Y_c)\sin\alpha]/p + NJ/2$$

■ I = $[-(X - X_c)\sin\alpha - (Y - Y_c)\cos\alpha]/p + NI/2$

 Mapeamento inverso do sistema de coordenadas da imagem corrigida (J,I) sobre o sistema de coordenadas da imagem bruta (C,L)

•
$$C = a_0 + a_1 I + a_2 J + a_3 I^2 + a_4 I J + a_5 J^2 + ... + a_m J^n$$

- $L = b_0 + b_1 I + b_2 J + b_3 I^2 + b_4 I J + b_5 J^2 + ... + b_m J^n$
- m = ((n + 1)(n + 2)/2) 1

Vantagens

- Simplicidade de execução
- Não requer conhecimento de parâmetros orbitais e do sistema sensor

Desvantagens

- Não modela distorções de alta frequência (relevo e variação do tempo útil de varredurra)
- Requer um número mínimo de pontos de controle bem distribuídos
- Não envolve os conceitos físicos inerentes à aquisição das imagens

- Análise individual de cada distorção
 - Modelo inverso que permita eliminar a distorção
- Não leva em conta a interdependência entre as várias fontes de distorção
- Atua diretamente sobre as coordenadas de imagem bruta (C,L)
 - Calcula os desvios (△C, △L) para cada distorção
 - Imagem corrigida é obtida pelo somatório dos desvios

Variação do tempo útil de varredura

• $\Delta C = C[(NC_{nominal} - NC_{real}) - 1]$

Tempo associado à aquisição de um pixel

• t = TI + (L/FV) + (TUV/NC)C

- TI é o tempo referente ao início da imagem
- FV é a frequência de varredura
- TUV é o tempo útil de varredura
- NC é o tamanho da varredura corrigido dos efeitos de variação do tempo útil e eventuais deslocamentos entre bandas e/ou detetores

- Interpolação dos dados de efemérides e de atitude para o instante t
 - (X_s,Y_s,Z_s)_t ... posição no instante t
 - (dX_s/dt,dY_s/dt,dZ_s/dt)_t ... velocidade no instante t
 - (R,A,G)_t ... atitude no instante t
- Interpolações são realizadas para os nós de uma grade definida sobre a imagem bruta
 - Grade de 25x18 pontos (MSS LANDSAT)

Variação da velocidade

- Calcula-se a posição de cada varredura com base na velocidade real (interpolada) do satélite
- Afeta a imagem no sentido transversal às varreduras
- $\Delta L = L_{real} L_{nominal}$
- Variação da altitude
 - Afeta a imagem na direção das varreduras
 - $\Delta C = C(H_{real}/H_{nominal} 1)$
 - H_{real} é obtido a partir da transformação de (X_s,Y_s,Z_s) em coordenadas geodésicas (φ_s,λ_s,H_s)

Rolamento (roll)

- Afeta a imagem na direção das varreduras
- $\Delta C = H_{nominal} tgR/pixel$
- Arfagem (pitch)
 - Afeta a imagem no sentido transversal às varreduras
 - $\Delta L = H_{nominal} tgA/pixel$
- Guinada (yaw)
 - Afeta a imagem ao longo de colunas e linhas
 - $(\Delta L, \Delta C) = (CsenG, C CcosG)$

Cisalhamento da varredura

- Usa-se a velocidade do satélite interpolada para o instante t de aquisição de cada amostra
- Atua apenas no sentido transversal às varreduras
- $\Delta L = V_s(t) \Delta t/pixel$
- ∆t é o intervalo de tempo entre o pixel inicial (C=0) e o pixel corrente (posição C) da linha
- Afeta basicamente as imagens do sensor MSS do LANDSAT

Distorção panorâmica

- Atua apenas no sentido das varreduras
- Coordenada C_{corrigida} é função do ângulo de visada θ
- $C_{corrigida} = H_{nominal} tg\theta/pixel$: $\Delta C = C_{corrigida} C_{nominal}$

Rotação da Terra

- Atua apenas no sentido das varreduras
- $\Delta C = V_{tangencial} \cos \psi / [(FV) pixel]$
- FV é a frequência de varredura e ψ é o complemento do ângulo de orientação da órbita

Esfericidade da Terra

- Atua apenas no sentido das varreduras
- $R/sen\theta = (R+H_0)/sen(\theta+\alpha)$
- $\theta = \operatorname{arctg}(C/H_0)$
- $\alpha = \arcsin[\operatorname{sen}\theta.(R+H_0)/R] \theta$

•
$$C_c = R\alpha/pixel$$

$$\Delta C = C_c - C$$

(Machado e Silva, 1989)

Vantagens

- Fácil associação entre distorções residuais na imagem e possíveis fontes de distorção
- Independente de pontos de controle

Desvantagens

- Usa uma sequência de ΣΔC e ΣΔL, associando a imagem de saída a um sistema plano-retangular que não se vincula a uma projeção cartográfica
- Não considera a interdependência das distorções
- Usa um modelo esférico para a Terra

- Relaciona um ponto da imagem bruta, através de suas coordenadas (C,L), com um ponto sobre a figura de referência da Terra, através de suas coordenadas geocêntricas cartesianas (X,Y,Z)
- Envolve o conceito físico inerente à aquisição das imagens e modela as distorções de forma global

A posição do satélite e a direção de visada determinam uma reta que intercepta a superfície da Terra

Parâmetros da plataforma (satélite)

Efemérides e atitude

Parâmetros do instrumento (sensor)

- $\theta = f(C)$, FV, TA ou TUV
- Orientação entre os sistemas de referência do instrumento e do sensor de atitude (boresight)

Parâmetros da figura de referência da Terra

 Semi-eixo maior e achatamento do elipsóide de referência

- Determinação do instante t de aquisição de um certo pixel
 - Função de TI, FV, TA ou TUV
- Interpolação dos dados de efemérides e atitude para o instante t
- Determinação do vetor de visada (θ = f (C))
 Transformação do SRI no SGG
- Intersecção com a figura de referência da Terra

- Transformação do SRI (sistema de referência do instrumento) no SRA (sistema de referência do sensor de atitude)
- O SRI e o SRA se relacionam através dos ângulos de boresight (bx,by,bz) ... por construção
- (bx,by,bz) são estimados antes do lançamento
- $(X,Y,Z)_{SRA} = [MB](X,Y,Z)_{SRI}$
- $[MB] = R_{bx}^{x}R_{by}^{y}R_{bz}^{z}$

- Transformação do SRA (sistema de referência do sensor de atitude) no SRO (sistema de referência da órbita)
- O SRA e o SRO se relacionam através dos ângulos de atitude (R,A,G)
- O SRO corresponde à situação de atitude nula
- $(X,Y,Z)_{SRO} = [MA](X,Y,Z)_{SRA}$
- $[MA] = R_R^X R_A^y R_G^z$

- Transformação do SRO (sistema de referência da órbita) no SGG (sistema geocêntrico de Greenwich)
- O SRO e o SGG se relacionam através dos dados de efemérides
- O vetor de translação entre os dois sistemas pode ser negligenciado, uma vez que se busca estabelecer relações entre direções

•
$$(X,Y,Z)_{SGG} = [ME](X,Y,Z)_{SRO}$$

Determinação do vetor de visada ... etapa 3 Os vetores R, V, X_o e Z_o são coplanares

- ME = [m_{ij}]
- $(m_{13}, m_{23}, m_{33}) = 1/|R|.(X_S, Y_S, Z_S)$
- $(m_{12}, m_{22}, m_{32}) = 1/(|R||V|).(Y_SVz_S-Z_SVy_S, Z_SVx_S-X_SVz_S, X_SVy_S-Y_SVx_S)$
- $(m_{11}, m_{21}, m_{31}) = 1/|R|.(m_{22}Z_s m_{32}Y_s, m_{32}X_s m_{12}Z_s, m_{12}Y_s m_{22}X_s)$
- \therefore (X,Y,Z)_{SGG} = [ME][MA][MB](X,Y,Z)_{SRI}

Intersecção com a figura da Terra

- Faz-se a intersecção da reta 'r', definida pelo vetor de visada (α,β,γ) e pela posição do satélite (X_s,Y_s,Z_s), com a superfície de referência da Terra F(X,Y,Z)
- 'Reta r': $(X,Y,Z) = (\alpha,\beta,\gamma)p + (X_S,Y_S,Z_S)$
- 'Terra' : $F(X,Y,Z) = (1-e^2)(X^2+Y^2) + Z^2 a^2(1-e^2) = 0$
- $A = (1-e^2)(\alpha^2 + \beta^2) + \gamma^2$
- $B = 2[(1-e^2)(\alpha X_S + \beta Y_S) + \gamma Z_S]$
- $C = (1-e^2)(X_s^2+Y_s^2-a^2) + Z_s^2$
- $p = [-B \pm (B^2-4AC)^{0.5}]/2A \dots$ buscar solução visível!

Determinação das coordenadas geodésicas

- Coloca-se 'p' na equação da reta 'r' e calcula-se (X,Y,Z)
- $X = Ncos \phi cos \lambda$
- $Y = Ncos \phi sen \lambda$
- $Z = N(1-e^2)sen\phi$
- $N = a/(1-e^2sen^2\phi)^{0.5}$
- $\lambda = \operatorname{arctg}(Y/X)$
- $\phi = arctg\{Z/[(X^2+Y^2)^{0.5}(1-e^2)]\}$

Vantagens

- Elimina as distorções geométricas globalmente
- Permite a representação da imagem corrigida em qualquer sistema de projeção cartográfica
- Permite o refinamento dos dados de atitude (Caron e Simon, 1975) ou dos dados de efemérides (d'Alge, Bezerra e Medeiros, 1988) a partir de alguns pontos de controle
- Desvantagens
 - Complexidade

Fotogrametria clássica

- Retificação é o processo de obtenção de fotografias aéreas verticais a partir de fotografias aéreas inclinadas
- Fotografias aéreas retificadas são equivalentes à fotografias aéreas verticais, mas os problemas de deslocamento devido ao relevo permanecem nas imagens das feições fotografadas

Imagens de sensoriamento remoto

 Correção geométrica através do modelo fotogramétrico com o uso de um modelo digital de elevação do terreno

 Deslocamento devido ao relevo em função do ângulo de visada (SPOT)

Ângulo de visada (grau) Altitude (metro)	0,0	4,5	9,0	13,5	18,0	22,5	27,0
0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
500	0,0	44,5	89,8	136,7	186,3	239,7	298,7
1000	0,0	89,0	179,5	273,4	372,5	479,4	597,3
1500	· 0,0	133,4	269,3	410,0	558,7	719,0	895,9
2000	0,0	- 177,9	359,0	546,6	744.8	958 <u>.</u> 6	1194,5
2500	0,0	222,4	448,7	683,2	931,0	1198,1	1492,9
3000	0,0	266,8	538,4	819,8	1117,1	1437.6	1791,3

Exatidão do MDE em função do ângulo de visada e uma exatidão planimétrica de 10m

SER-437

Intersecção com a superfície do MDE

- Complexidade
- Custo computacional elevado

Elipsóides auxiliares definidos por H_{min} e H_{max}

- Impossível definir dois elipsóides de modo que a distância entre eles seja constante
- $a_H = a + H e b_H = b + H$, onde a e b são os semi-eixos
- $\mathbf{e}_{H} = \mathbf{e} \mathbf{e} \mathbf{a}_{H} = \mathbf{a} + \mathbf{H} \mathbf{ou} \mathbf{b}_{H} = \mathbf{b} + \mathbf{H}$
- e_H = e e os elipsóides passam pelo ponto-objeto referente ao centro da cena, incorporando ora H_{min} ora H_{max}

 Aplica-se o modelo fotogramétrico aos dois elipsóides auxiliares (mapeamento direto)

(Machado e Silva, 1989)

Finaliza-se o mapeamento direto usando o elipsóide de referência para a Terra

•
$$(X_1,Y_1,Z_1)_{ij} \rightarrow (\phi_1,\lambda_1,H_1)_{ij} \rightarrow (XP_1,YP_1)_{ij}$$

$$(X_2,Y_2,Z_2)_{ij} \rightarrow (\phi_2,\lambda_2,H_2)_{ij} \rightarrow (XP_2,YP_2)_{ij}$$

 Discretizam-se as coordenadas de projeção em coordenadas de imagem corrigida

$$\Box (\mathsf{XP}_1, \mathsf{YP}_1)_{ij} \to (\mathsf{J}_1, \mathsf{I}_1)_{ij}$$

 $\Box (\mathsf{XP}_2, \mathsf{YP}_2)_{ij} \to (\mathsf{J}_2, \mathsf{I}_2)_{ij}$

 Uma grade regular (C,L)_{ij} na imagem bruta fica associada a duas grades irregulares (J₁,I₁)_{ij} e (J₂,I₂)_{ij} na imagem corrigida

- Faz-se o mapeamento inverso pela inversão das relações de (C,L)_{ij} com (J₁, I₁)_{ij} e (J₂, I₂)_{ij}
 - Uma grade regular (J,I)_{ij} na imagem corrigida fica associada a duas grades irregulares (C₁,L₁)_{ij} e (C₂,L₂)_{ij} na imagem bruta
 - Inverte-se o processo de discretização e associa-se a cada ponto (J,I) um par de coordenadas de projeção (XP,YP)
 - Entra-se com (XP,YP) no MDE para obter a altitude H associada ao ponto (J,I) ... É ISTO MESMO ???

Na verdade ... a coisa é mais complicada !!!

- As coordenadas de projeção (XP,YP) são calculadas pelo processo de correção geométrica de sistema
- Portanto, as coordenadas (XP,YP) contêm os erros inerentes aos dados de efemérides
- O MDE está georreferenciado, mas as coordenadas (XP,YP) precisam ser refinadas
- Solução: usar o resultado do mapeamento direto sobre pontos de controle previamente selecionados

Mapeamento direto sobre pontos de controle

- $(C,L)_n \rightarrow (XP,YP)_n \dots$ para os **n** pontos de controle
- Estabelece-se uma relação entre as coordenadas dos pontos de controle calculadas pelo mapeamento direto, (XP,YP)_n, e as coordenadas de referência, (XPR,YPR)_n
- Usa-se uma transformação de afinidade para relacionar as coordenadas (XP,YP)_n com (XPR,YPR)_n
- Aplica-se a transformação de afinidade sobre as coordenadas calculadas para a grade, (XP,YP)_{ii}
- Finalmente ... acessa-se o MDE para extrair H_{ii}

Interpolam-se as coordenadas de imagem bruta obtidas a partir dos elipsóides auxiliares, (C₁,L₁) e (C₂,L₂), para calcular as coordenadas (C,L) da imagem bruta referentes ao par de coordenadas (J,I) da imagem corrigida

•
$$C = [C_1(H - H_{min}) + C_2(H_{max} - H)]/(H_{max} - H_{min})$$

• $L = [L_1(H - H_{min}) + L_2(H_{max} - H)]/(H_{max} - H_{min})$

