28 #ifndef __TERRALIB_COMMON_INTERNAL_MATRIXUTILS_H 
   29 #define __TERRALIB_COMMON_INTERNAL_MATRIXUTILS_H 
   38 #include <boost/numeric/ublas/io.hpp> 
   39 #include <boost/numeric/ublas/lu.hpp> 
   40 #include <boost/numeric/ublas/matrix.hpp> 
   41 #include <boost/numeric/ublas/triangular.hpp> 
   42 #include <boost/numeric/ublas/vector.hpp> 
   43 #include <boost/numeric/ublas/vector_proxy.hpp> 
   60       if( ( inputMatrix.size1() == 0 ) || ( inputMatrix.size2() == 0 ) )
 
   67       boost::numeric::ublas::matrix<T> 
A( inputMatrix );      
 
   69       const unsigned int size1 = A.size1();
 
   71       boost::numeric::ublas::permutation_matrix<std::size_t> pm( size1 );
 
   73       if( boost::numeric::ublas::lu_factorize( A, pm ) != 0.0 ) 
 
   80         for ( 
unsigned int pmi = 0; pmi < size1; ++pmi)
 
   81           if ( pmi != pm( pmi ) )
 
   86         for( 
unsigned int i = 0 ; i < size1 ; i++ ) 
 
   87           determinant *= 
A(i,i); 
 
   89         determinant = determinant * pmSign;
 
  105                           boost::numeric::ublas::matrix<T>& outputMatrix)
 
  107       assert( inputMatrix.size1() == inputMatrix.size2() );
 
  110       boost::numeric::ublas::matrix<T> 
A( inputMatrix );
 
  113       boost::numeric::ublas::permutation_matrix<std::size_t> pm( A.size1() );
 
  116       if( boost::numeric::ublas::lu_factorize( A, pm ) != 0 )
 
  123         outputMatrix = boost::numeric::ublas::identity_matrix<T>( A.size1() );
 
  128           boost::numeric::ublas::lu_substitute( A, pm, outputMatrix );
 
  153                                 boost::numeric::ublas::matrix<T>& outputMatrix)
 
  155       if( inputMatrix.size1() > inputMatrix.size2() )
 
  157         boost::numeric::ublas::matrix<T> trans( boost::numeric::ublas::trans(
 
  160         boost::numeric::ublas::matrix<T> aux1( boost::numeric::ublas::prod( trans,
 
  163         boost::numeric::ublas::matrix<T> aux1Inv;
 
  167           outputMatrix = boost::numeric::ublas::prod( aux1Inv, trans );
 
  175       else if( inputMatrix.size1() < inputMatrix.size2() )
 
  177         boost::numeric::ublas::matrix<T> trans( boost::numeric::ublas::trans(
 
  180         boost::numeric::ublas::matrix<T> aux1( boost::numeric::ublas::prod(
 
  181           inputMatrix, trans ) );
 
  183         boost::numeric::ublas::matrix<T> aux1Inv;
 
  187           outputMatrix = boost::numeric::ublas::prod( trans, aux1Inv );
 
  211     bool EigenVectors(
const boost::numeric::ublas::matrix<T>& inputMatrix, boost::numeric::ublas::matrix<T> &eigenVectorsMatrix, boost::numeric::ublas::matrix<T> &eigenValuesMatrix)
 
  218       int dim = inputMatrix.size1();
 
  227       double range, fdim, anorm, anrmx,
 
  229              sinx, cosx, sinx2, cosx2,
 
  235       eigenVectorsMatrix.resize(dim, dim);
 
  236       eigenVectorsMatrix.clear();
 
  237       for (i = 0; i < dim; i++)
 
  238         eigenVectorsMatrix(i, i) = 1.0;
 
  240       int fat = (dim * dim + dim) / 2;
 
  244       cov = 
new double[fat];
 
  245       e_vec = 
new double[dim * dim];
 
  246       e_val = 
new double[fat];
 
  248       if( cov == NULL || e_vec == NULL || e_val == NULL )
 
  252       for (i = 0; i < dim; i++)
 
  253         for (j = 0; j <= i; j++)
 
  254           cov[k++] = inputMatrix(i, j);
 
  256       for (i = 0; i < ((dim * dim + dim) / 2); i++)
 
  260       for (i = 0; i < dim; i++)
 
  263         for (j = 0; j < dim; j++)
 
  275       for (j = 0; j < dim; j++)
 
  277         for (i = 0; i <= j; i++)
 
  280             ia = i + (j * j + j) / 2;
 
  281             anorm = anorm + e_val[ia] * e_val[ia];
 
  287         anorm = 1.414 * sqrt((
double)anorm);
 
  288         anrmx = anorm * range / fdim;
 
  311                 mq = (m * m + m) / 2;
 
  312                 lq = (l * l + l) / 2;
 
  315                 if (fabs((
double)(e_val[lm])) >= thr)
 
  321                   x = 0.5 * (e_val[ll] - e_val[mm]);
 
  322                   z = e_val[lm] * e_val[lm] + x * x;
 
  323                   y = - e_val[lm] / sqrt((
double)(z));
 
  328                   z = sqrt( (
double)(1.0 - y * y) );
 
  329                   sinx = y / sqrt( (
double)(2.0 * (1.0 + z)) );
 
  332                   cosx = sqrt( (
double)(1.0 - sinx2) );
 
  340                   for (i = 0; i < dim; i++)
 
  342                     iq = (i * i + i) / 2;
 
  357                         x = e_val[il] * cosx - e_val[im] * sinx;
 
  358                         e_val[im] = e_val[il] * sinx + e_val[im] * cosx;
 
  366                     x = e_vec[ilr] * cosx - e_vec[imr] * sinx;
 
  367                     e_vec[imr] = e_vec[ilr] * sinx + e_vec[imr] * cosx;
 
  371                   x = 2.0 * e_val[lm] * sincs;
 
  372                   y = e_val[ll] * cosx2 + e_val[mm] * sinx2 - x;
 
  373                   x = e_val[ll] * sinx2 + e_val[mm] * cosx2 + x;
 
  375                   e_val[lm] = (e_val[ll] - e_val[mm]) * sincs + e_val[lm] * (cosx2 - sinx2);
 
  405       for (i = 0; i < dim; i++)
 
  408         ll = i + (i * i + i) / 2;
 
  411         for (j = i; j < dim; j++)
 
  414           mm = j + (j * j + j) / 2;
 
  416           if (e_val[ll] < e_val[mm])
 
  419             e_val[ll] = e_val[mm];
 
  422             for (k = 0; k < dim; k++)
 
  427               e_vec[ilr] = e_vec[imr];
 
  435       eigenValuesMatrix.resize(fat, 1);
 
  436       eigenValuesMatrix.clear();
 
  438       for (i = 0; i < dim; i++)
 
  439         for (j = 0; j < dim; j++)
 
  440           eigenVectorsMatrix(j, i) = e_vec[k++];
 
  441       for (i = 0; i < fat; i++)
 
  442         eigenValuesMatrix(i, 0) = e_val[i];
 
  454 #endif  //__TERRALIB_COMMON_INTERNAL_MATRIXUTILS_H 
bool getPseudoInverseMatrix(const boost::numeric::ublas::matrix< T > &inputMatrix, boost::numeric::ublas::matrix< T > &outputMatrix)
Pseudo matrix inversion. 
 
bool getInverseMatrix(const boost::numeric::ublas::matrix< T > &inputMatrix, boost::numeric::ublas::matrix< T > &outputMatrix)
Matrix inversion. 
 
bool GetDeterminant(const boost::numeric::ublas::matrix< T > &inputMatrix, double &determinant)
Get the Matrix determinant value. 
 
Configuration flags for the TerraLib Common Runtime module. 
 
bool EigenVectors(const boost::numeric::ublas::matrix< T > &inputMatrix, boost::numeric::ublas::matrix< T > &eigenVectorsMatrix, boost::numeric::ublas::matrix< T > &eigenValuesMatrix)
Computes the eigenvectors of a given matrix.