Classifier Parameters. More...
#include <ClassifierEMStrategy.h>
 
  
 | Public Member Functions | |
| AbstractParameters * | clone () const | 
| Create a clone copy of this instance.  More... | |
| const Parameters & | operator= (const Parameters ¶ms) | 
| Parameters () | |
| void | reset () throw ( te::rp::Exception ) | 
| Clear all internal allocated resources and reset the parameters instance to its initial state.  More... | |
| ~Parameters () | |
| Public Attributes | |
| std::vector< std::vector< double > > | m_clustersMeans | 
| The previously estimated means of the clusters (optional).  More... | |
| double | m_epsilon | 
| The stop criteria. When the clusters change in a value smaller then epsilon, the convergence is achieved.  More... | |
| unsigned int | m_maxInputPoints | 
| The maximum number of points used to estimate the clusters (default = 1000).  More... | |
| unsigned int | m_maxIterations | 
| The maximum of iterations (E/M steps) to perform if convergence is not achieved.  More... | |
| unsigned int | m_numberOfClusters | 
| The number of clusters (classes) to estimate in the image.  More... | |
Definition at line 67 of file ClassifierEMStrategy.h.
| te::rp::ClassifierEMStrategy::Parameters::Parameters | ( | ) | 
| te::rp::ClassifierEMStrategy::Parameters::~Parameters | ( | ) | 
| 
 | virtual | 
Create a clone copy of this instance.
Implements te::common::AbstractParameters.
| const Parameters& te::rp::ClassifierEMStrategy::Parameters::operator= | ( | const Parameters & | params | ) | 
| 
 | virtual | |||||||||||||
Clear all internal allocated resources and reset the parameters instance to its initial state.
Implements te::common::AbstractParameters.
| std::vector<std::vector<double> > te::rp::ClassifierEMStrategy::Parameters::m_clustersMeans | 
The previously estimated means of the clusters (optional).
Definition at line 75 of file ClassifierEMStrategy.h.
| double te::rp::ClassifierEMStrategy::Parameters::m_epsilon | 
The stop criteria. When the clusters change in a value smaller then epsilon, the convergence is achieved.
Definition at line 74 of file ClassifierEMStrategy.h.
| unsigned int te::rp::ClassifierEMStrategy::Parameters::m_maxInputPoints | 
The maximum number of points used to estimate the clusters (default = 1000).
Definition at line 73 of file ClassifierEMStrategy.h.
| unsigned int te::rp::ClassifierEMStrategy::Parameters::m_maxIterations | 
The maximum of iterations (E/M steps) to perform if convergence is not achieved.
Definition at line 72 of file ClassifierEMStrategy.h.
| unsigned int te::rp::ClassifierEMStrategy::Parameters::m_numberOfClusters | 
The number of clusters (classes) to estimate in the image.
Definition at line 71 of file ClassifierEMStrategy.h.