MAP strategy for classification.  
 More...
#include <MAP.h>
 | 
| bool  | classify (const InputAdaptor< double > &input, const std::vector< unsigned int > &attributesIndices, const std::vector< double > &inputNoDataValues, OutputAdaptor< unsigned int > &output, const unsigned int outputIndex, const double outputNoDataValue, const bool enableProgressInterface)  throw (te::cl::Exception) | 
|   | Classify an input iterated data and save the result on the output iterated data.  More...
  | 
|   | 
| bool  | initialize (const Parameters ¶ms)  throw (te::cl::Exception) | 
|   | Initialize this classifier instance with new parameters.  More...
  | 
|   | 
|   | MAP () | 
|   | 
| bool  | train (const InputAdaptor< double > &samples, const std::vector< unsigned int > &attributesIndices, const std::vector< unsigned int > &sampleLabels, const bool enableProgressInterface)  throw (te::cl::Exception) | 
|   | Train this classifier instance using the initialization parameters and the suppied train data.  More...
  | 
|   | 
|   | ~MAP () | 
|   | 
 | 
| bool  | getPrioriProbabilities (const InputAdaptor< double > &input, const std::vector< unsigned int > &attributesIndices, std::vector< double > &prioriProbs) const | 
|   | Calculate priori probabilities by pre-classifying the input data.  More...
  | 
|   | 
| void  | reset () | 
|   | Reset this instance to its initial state.  More...
  | 
|   | 
MAP strategy for classification. 
Definition at line 54 of file MAP.h.
 
◆ MAP()
◆ ~MAP()
◆ classify()
      
        
          | bool te::cl::MAP::classify  | 
          ( | 
          const InputAdaptor< double > &  | 
          input,  | 
        
        
           | 
           | 
          const std::vector< unsigned int > &  | 
          attributesIndices,  | 
        
        
           | 
           | 
          const std::vector< double > &  | 
          inputNoDataValues,  | 
        
        
           | 
           | 
          OutputAdaptor< unsigned int > &  | 
          output,  | 
        
        
           | 
           | 
          const unsigned int  | 
          outputIndex,  | 
        
        
           | 
           | 
          const double  | 
          outputNoDataValue,  | 
        
        
           | 
           | 
          const bool  | 
          enableProgressInterface  | 
        
        
           | 
          ) | 
           |  | 
        
        
          | throw  | ( | te::cl::Exception | 
        
        
           | ) |  |  | 
        
      
 
Classify an input iterated data and save the result on the output iterated data. 
- Parameters
 - 
  
    | input | Input data to be classified.  | 
    | attributesIndices | The attributes indexes to processe from the iterated train data.  | 
    | inputNoDataValues | A vector of no-data values for each attribute dimension or an empty vector if no-data values are not used.  | 
    | output | Output classified data.  | 
    | outputIndex | The output attribute index.  | 
    | outputNoDataValue | A output label value to use when dealing with input no-data.  | 
    | enableProgressInterface | Enable/disable the use of a proress interfece.  | 
  
   
 
 
◆ getPrioriProbabilities()
  
  
      
        
          | bool te::cl::MAP::getPrioriProbabilities  | 
          ( | 
          const InputAdaptor< double > &  | 
          input,  | 
         
        
           | 
           | 
          const std::vector< unsigned int > &  | 
          attributesIndices,  | 
         
        
           | 
           | 
          std::vector< double > &  | 
          prioriProbs  | 
         
        
           | 
          ) | 
           |  const | 
         
       
   | 
  
protected   | 
  
 
Calculate priori probabilities by pre-classifying the input data. 
- Parameters
 - 
  
    | input | Input data to be classified.  | 
    | attributesIndices | The attributes indexes to processe from the iterated train data.  | 
    | prioriProbs | Calculated priori-probabilities.  | 
  
   
 
 
◆ initialize()
      
        
          | bool te::cl::MAP::initialize  | 
          ( | 
          const Parameters &  | 
          params | ) | 
           | 
        
        
          | throw  | ( | te::cl::Exception | 
        
        
           | ) |  |  | 
        
      
 
Initialize this classifier instance with new parameters. 
- Parameters
 - 
  
    | params | New initialization parameters.  | 
  
   
 
 
◆ reset()
  
  
      
        
          | void te::cl::MAP::reset  | 
          ( | 
           | ) | 
           | 
         
       
   | 
  
protected   | 
  
 
Reset this instance to its initial state. 
 
 
◆ train()
      
        
          | bool te::cl::MAP::train  | 
          ( | 
          const InputAdaptor< double > &  | 
          samples,  | 
        
        
           | 
           | 
          const std::vector< unsigned int > &  | 
          attributesIndices,  | 
        
        
           | 
           | 
          const std::vector< unsigned int > &  | 
          sampleLabels,  | 
        
        
           | 
           | 
          const bool  | 
          enableProgressInterface  | 
        
        
           | 
          ) | 
           |  | 
        
        
          | throw  | ( | te::cl::Exception | 
        
        
           | ) |  |  | 
        
      
 
Train this classifier instance using the initialization parameters and the suppied train data. 
- Parameters
 - 
  
    | samples | Train data samples.  | 
    | attributesIndices | The attributes indexes to processe from the iterated train data.  | 
    | sampleLabels | The sample lables for each iterated train data element.  | 
    | enableProgressInterface | Enable/disable the use of a proress interfece.  | 
  
   
 
 
◆ m_classesCovarianceInvMatrixes
  
  
      
        
          | std::vector< boost::numeric::ublas::matrix< double > > te::cl::MAP::m_classesCovarianceInvMatrixes | 
         
       
   | 
  
protected   | 
  
 
Classes covariance inverse matrixes. 
Definition at line 131 of file MAP.h.
 
 
◆ m_classesCovarianceMatrixes
  
  
      
        
          | std::vector< boost::numeric::ublas::matrix< double > > te::cl::MAP::m_classesCovarianceMatrixes | 
         
       
   | 
  
protected   | 
  
 
Classes covariance matrixes. 
Definition at line 130 of file MAP.h.
 
 
◆ m_classesMeans
  
  
      
        
          | std::vector< std::vector< double > > te::cl::MAP::m_classesMeans | 
         
       
   | 
  
protected   | 
  
 
Classes means;. 
Definition at line 129 of file MAP.h.
 
 
◆ m_classesOptizedMAPDiscriminantTerm
  
  
      
        
          | std::vector< double > te::cl::MAP::m_classesOptizedMAPDiscriminantTerm | 
         
       
   | 
  
protected   | 
  
 
An optimized portion of the MAP discriminant function. 
Definition at line 133 of file MAP.h.
 
 
◆ m_classLabels
  
  
      
        
          | std::vector<unsigned int> te::cl::MAP::m_classLabels | 
         
       
   | 
  
protected   | 
  
 
class labels 
Definition at line 132 of file MAP.h.
 
 
◆ m_isInitialized
  
  
      
        
          | bool te::cl::MAP::m_isInitialized | 
         
       
   | 
  
protected   | 
  
 
True if this instance is initialized. 
Definition at line 127 of file MAP.h.
 
 
◆ m_parameters
Internal execution parameters. 
Definition at line 128 of file MAP.h.
 
 
The documentation for this class was generated from the following file:
- /home/castejon/castejon_files/develop/terralib5/git_release/src/terralib/classification/MAP.h