Go to the documentation of this file.
26 #ifndef __TERRALIB_CLASSIFICATION_INTERNAL_MAXLIKELIHOOD_H
27 #define __TERRALIB_CLASSIFICATION_INTERNAL_MAXLIKELIHOOD_H
30 #include "../common/AbstractParameters.h"
31 #include "../common/MatrixUtils.h"
32 #include "../common/progress/TaskProgress.h"
42 #include <boost/numeric/ublas/matrix.hpp>
78 AbstractParameters*
clone()
const;
101 const std::vector<unsigned int>& attributesIndices,
102 const std::vector<unsigned int>& sampleLabels,
103 const bool enableProgressInterface);
116 const std::vector<unsigned int>& attributesIndices,
117 const std::vector< double >& inputNoDataValues,
119 const unsigned int outputIndex,
120 const unsigned int outputNoDataValue,
121 const bool enableProgressInterface);
128 bool getCovMatrixes( std::vector< boost::numeric::ublas::matrix< double > >& covMatrixes )
const;
142 bool getMeans( std::vector< std::vector< double > >& classesMeans )
const;
149 bool getLables( std::vector<unsigned int>& classLabels )
const;
168 #endif // __TERRALIB_CLASSIFICATION_INTERNAL_MAXLIKELIHOOD_H
bool classify(const InputAdaptor< double > &input, const std::vector< unsigned int > &attributesIndices, const std::vector< double > &inputNoDataValues, OutputAdaptor< unsigned int > &output, const unsigned int outputIndex, const unsigned int outputNoDataValue, const bool enableProgressInterface)
Classify an input iterated data and save the result on the output iterated data.
std::vector< double > m_classesOptizedMaxLikelihoodDiscriminantTerm
An optimized portion of the MaxLikelihood discriminant function.
bool train(const InputAdaptor< double > &samples, const std::vector< unsigned int > &attributesIndices, const std::vector< unsigned int > &sampleLabels, const bool enableProgressInterface)
Train this classifier instance using the initialization parameters and the suppied train data.
std::vector< boost::numeric::ublas::matrix< double > > m_classesCovarianceInvMatrixes
Classes covariance inverse matrixes.
bool getLables(std::vector< unsigned int > &classLabels) const
Get the current classes labels.
bool getCovMatrixes(std::vector< boost::numeric::ublas::matrix< double > > &covMatrixes) const
Get the current classes covariance matrixes.
bool getInverseCovMatrixes(std::vector< boost::numeric::ublas::matrix< double > > &invCovMatrixes) const
Get the current classes inverse covariance matrixes.
bool m_isInitialized
True if this instance is initialized.
A maximum likelihood estimation strategy for classification (a.k.a. MaxVer in portuguese).
An exception class for the XML module.
void reset()
Reset this instance to its initial state.
Classifiers output data adaptor.
AbstractParameters * clone() const
Create a clone copy of this instance.
Parameters m_parameters
Internal execution parameters.
void reset()
Clear all internal allocated resources and reset the parameters instance to its initial state.
const Parameters & operator=(const Parameters ¶ms)
std::vector< unsigned int > m_classLabels
class labels
bool getMeans(std::vector< std::vector< double > > &classesMeans) const
Get the current classes means.
Proxy configuration file for TerraView (see terraview_config.h).
std::vector< boost::numeric::ublas::matrix< double > > m_classesCovarianceMatrixes
Classes covariance matrixes.
Abstract parameters base interface.
bool initialize(const Parameters ¶ms)
Initialize this classifier instance with new parameters.
std::vector< std::vector< double > > m_classesMeans
Classes means;.
#define TECLEXPORT
You can use this macro in order to export/import classes and functions from this module.