Classifier Parameters. More...
#include <ClassifierKMeansStrategy.h>
Public Member Functions | |
AbstractParameters * | clone () const |
Create a clone copy of this instance. More... | |
const Parameters & | operator= (const Parameters ¶ms) |
Parameters () | |
void | reset () |
Clear all internal allocated resources and reset the parameters instance to its initial state. More... | |
bool | serialize (AlgorithmParametersSerializer &serializer) const |
Returns a parameter serialization object. More... | |
~Parameters () | |
Public Attributes | |
double | m_epsilon |
The stop criteria. When the clusters change in a value smaller then epsilon, the convergence is achieved. More... | |
unsigned int | m_K |
The number of clusters (means) to detect in image. More... | |
unsigned int | m_maxInputPoints |
The maximum number of points used to estimate the clusters (default = 1000). More... | |
unsigned int | m_maxIterations |
The maximum of iterations to perform if convergence is not achieved. More... | |
Definition at line 63 of file ClassifierKMeansStrategy.h.
te::rp::ClassifierKMeansStrategy::Parameters::Parameters | ( | ) |
te::rp::ClassifierKMeansStrategy::Parameters::~Parameters | ( | ) |
|
virtual |
Create a clone copy of this instance.
Implements te::common::AbstractParameters.
const Parameters& te::rp::ClassifierKMeansStrategy::Parameters::operator= | ( | const Parameters & | params | ) |
|
virtual |
Clear all internal allocated resources and reset the parameters instance to its initial state.
Implements te::common::AbstractParameters.
|
virtual |
Returns a parameter serialization object.
serializer | The output serialization object. |
Reimplemented from te::rp::ClassifierStrategyParameters.
double te::rp::ClassifierKMeansStrategy::Parameters::m_epsilon |
The stop criteria. When the clusters change in a value smaller then epsilon, the convergence is achieved.
Definition at line 70 of file ClassifierKMeansStrategy.h.
unsigned int te::rp::ClassifierKMeansStrategy::Parameters::m_K |
The number of clusters (means) to detect in image.
Definition at line 67 of file ClassifierKMeansStrategy.h.
unsigned int te::rp::ClassifierKMeansStrategy::Parameters::m_maxInputPoints |
The maximum number of points used to estimate the clusters (default = 1000).
Definition at line 69 of file ClassifierKMeansStrategy.h.
unsigned int te::rp::ClassifierKMeansStrategy::Parameters::m_maxIterations |
The maximum of iterations to perform if convergence is not achieved.
Definition at line 68 of file ClassifierKMeansStrategy.h.