Loading...
Searching...
No Matches
MultiSourceClassifierInputParameters.h
Go to the documentation of this file.
1/* Copyright (C) 2008 National Institute For Space Research (INPE) - Brazil.
2
3 This file is part of the TerraLib - a Framework for building GIS enabled applications.
4
5 TerraLib is free software: you can redistribute it and/or modify
6 it under the terms of the GNU Lesser General Public License as published by
7 the Free Software Foundation, either version 3 of the License,
8 or (at your option) any later version.
9
10 TerraLib is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public License
16 along with TerraLib. See COPYING. If not, write to
17 TerraLib Team at <terralib-team@terralib.org>.
18 */
19
20#ifndef __TERRALIB_RP_RADAR_INTERNAL_MULTISOURCECLASSIFIER_INPUT_PARAMETERS_H
21#define __TERRALIB_RP_RADAR_INTERNAL_MULTISOURCECLASSIFIER_INPUT_PARAMETERS_H
22
23#include "../Config.h"
24#include "../../raster/Raster.h"
25#include "../../raster/Grid.h"
26#include "../AlgorithmInputParameters.h"
27
28// Boost includes
29#include <boost/numeric/ublas/matrix.hpp>
30
31#include <vector>
32#include <string>
33
34namespace te
35{
36 namespace rp
37 {
38 class AlgorithmParametersSerializer;
39
40 namespace radar
41 {
42 /*!
43 \class MultiSourceClassifierInputParameters
44 \brief MultiSourceClassifier input parameters
45 */
47 {
48 public:
49
50 typedef unsigned int ClassIDT; //!< CLass ID type definiton.
51
52 // General input parameters
53 std::vector< te::rst::Raster* > m_inputRasterPtr; //!< Input rasters.
54
55 std::vector< std::vector< unsigned int > > m_inputRastersBands; //!< Bands to process.
56
57 // // Regions image parameters
58 unsigned int m_numberOfColumns; //!< Number of columns that all input rasters must have.
59
60 unsigned int m_numberOfRows; //!< Number of rows that all input rasters must have.
61
62 int m_SRID; //!< The SRID of raster data;
63
64 te::rst::Grid* m_extent; //!< The geographic extension of the raster data.
65
66 std::vector< te::gm::Polygon* > m_polygonsSegImage; //!< Polygons of segmented image.
67
68 te::rst::Raster const* m_rasterSegPtr; //!< Input segmented raster.
69
70 unsigned int m_sourcesNumber; //!< The number of different image sources.
71
72 std::vector< std::string > m_imageType; //!< The used data model (one for each input image) (Gaussian,Gamma,IntensityPair,Wishart).
73
74 std::vector< std::string > m_stochasticDistanceType; //!< The stochastic distance type (Bhattacharyya,Triangular).
75
76 bool m_savePerClassDistancesFile; //!< The flag to indicate if stochastic distance values per class will be saved on disk.
77
78 bool m_savePerClassStatiticsFile; //!< The flag to indicate if statistic test values per class will be saved on disk.
79
80 bool m_savePerClassPValueFile; //!< The flag to indicate if p-values per class will be saved on disk.
81
82 bool m_saveDistances; //!< The flag to indicate if stochastic distance values will be saved on disk.
83
84 bool m_saveStatitics; //!< The flag to indicate if statistic test values will be saved on disk.
85
86 bool m_savePValues; //!< The flag to indicate if p-values will be saved on disk.
87
88 bool m_saveReportFile; //!< The flag to indicate if the report will be saved on disk.
89
90 std::string m_combinationType; //!< How the build the multi-source classification procedure (sum, multiplication,minimum,Hellinger,fuzzy).
91
92 unsigned int m_lagX; //!< The horizontal correlation value.
93
94 unsigned int m_lagY; //!< The vertical correlation value.
95
96 double m_significanceLevel; //!< The significance level.
97
98 // Radar input parameters
99 std::vector< std::string > m_radarDataRepresentationType; //!< The radar data representation container.
100
101 std::vector< unsigned int > m_vectorOrMatrixOrder; //!< The lexicographic vector and covariance matrix order container.
102
103 std::vector< double > m_ENL; //!< Equivalent Number of Looks container.
104
105 std::vector< double > m_betaValue; //!< Beta values for Renyi distance container.
106
107 // Samples input
108 std::map< std::string, std::string > m_dirTrainingSamples; //!< Training samples data directory.
109
110 std::map< std::string, std::string > m_dirTestSamples; //!< Test samples data directory.
111
112 std::vector< te::gm::Polygon > m_polygonSamplesT; //!< Training samples polygons.
113 std::vector< std::vector< double > > m_polygonSamplesTNew; //!< Training samples polygons.
114 std::vector< std::vector< double > > m_polygonSamplesTestNew;
115 std::vector< int > m_numberOfSamples;
116 std::vector< int > m_numberOfSamplesTest;
117 std::vector< std::string > m_nameOfSamples;
118 std::vector< std::string > m_nameOfSamplesTest;
119
120 std::vector< unsigned int > m_classesIDT; //!< Training class ID.
121
122 std::vector< te::gm::Polygon > m_polygonSamplesTest; //!< Test samples polygons.
123
124 std::vector< unsigned int > m_classesIDTest; //!< Test class ID.
125
126 std::vector< unsigned int > m_classesIDT2; //!< Class ID.
127
128 unsigned int m_numberOfClassesOnTraining; //!< Number of classes on training.
129
130 unsigned int m_numberOfClassesOnTest; //!< Number of classes on test.
131
133
135
137
138 // overload
139 void reset();
140
141 // overload
143
144 // overload
145 AbstractParameters* clone() const;
146
147 // overload
149 };
150 } // end namespace radar
151 } // end namespace rp
152} // end namespace msc
153
154#endif
Raster Processing algorithm input parameters base interface.
A class to standardize algorithm parameters serialization.
unsigned int m_sourcesNumber
The number of different image sources.
std::vector< te::rst::Raster * > m_inputRasterPtr
Input rasters.
unsigned int m_numberOfRows
Number of rows that all input rasters must have.
AbstractParameters * clone() const
Create a clone copy of this instance.
std::string m_combinationType
How the build the multi-source classification procedure (sum, multiplication,minimum,...
std::vector< te::gm::Polygon > m_polygonSamplesTest
Test samples polygons.
unsigned int m_numberOfColumns
Number of columns that all input rasters must have.
std::vector< double > m_ENL
Equivalent Number of Looks container.
std::vector< std::vector< double > > m_polygonSamplesTNew
Training samples polygons.
bool m_savePerClassDistancesFile
The flag to indicate if stochastic distance values per class will be saved on disk.
bool m_saveDistances
The flag to indicate if stochastic distance values will be saved on disk.
bool m_saveReportFile
The flag to indicate if the report will be saved on disk.
unsigned int m_numberOfClassesOnTraining
Number of classes on training.
std::vector< std::string > m_radarDataRepresentationType
The radar data representation container.
std::vector< std::string > m_imageType
The used data model (one for each input image) (Gaussian,Gamma,IntensityPair,Wishart).
bool m_savePerClassPValueFile
The flag to indicate if p-values per class will be saved on disk.
bool m_savePValues
The flag to indicate if p-values will be saved on disk.
std::vector< double > m_betaValue
Beta values for Renyi distance container.
bool m_saveStatitics
The flag to indicate if statistic test values will be saved on disk.
std::vector< te::gm::Polygon > m_polygonSamplesT
Training samples polygons.
std::map< std::string, std::string > m_dirTestSamples
Test samples data directory.
te::rst::Grid * m_extent
The geographic extension of the raster data.
const MultiSourceClassifierInputParameters & operator=(const MultiSourceClassifierInputParameters &params)
std::vector< te::gm::Polygon * > m_polygonsSegImage
Polygons of segmented image.
std::vector< std::vector< unsigned int > > m_inputRastersBands
Bands to process.
te::rst::Raster const * m_rasterSegPtr
Input segmented raster.
void reset()
Clear all internal allocated resources and reset the parameters instance to its initial state.
bool m_savePerClassStatiticsFile
The flag to indicate if statistic test values per class will be saved on disk.
std::map< std::string, std::string > m_dirTrainingSamples
Training samples data directory.
bool serialize(te::rp::AlgorithmParametersSerializer &serializer) const
Returns a parameter serialization object.
MultiSourceClassifierInputParameters(const MultiSourceClassifierInputParameters &)
std::vector< unsigned int > m_vectorOrMatrixOrder
The lexicographic vector and covariance matrix order container.
std::vector< std::string > m_stochasticDistanceType
The stochastic distance type (Bhattacharyya,Triangular).
A rectified grid is the spatial support for raster data.
Definition: Grid.h:69
An abstract class for raster data strucutures.
Definition: Raster.h:72
TerraLib.
#define TERPEXPORT
You can use this macro in order to export/import classes and functions from this module.
Definition: Config.h:139