Loading...
Searching...
No Matches
te::rp::radar::GammaModel Class Reference

Gamma model data manipulation. More...

#include <GammaModel.h>

Public Types

typedef unsigned int ClassIDT
 CLass ID type definiton.
 
typedef std::vector< ClassSampleTClassSamplesContainerT
 Class samples container type definition.
 
typedef std::vector< double > ClassSampleT
 Class sample type definition.
 
typedef std::map< ClassIDT, ClassSamplesContainerTMClassesSamplesCT
 Multi-classes samples container type definition.
 
typedef boost::shared_ptr< MClassesSamplesCTMClassesSamplesCTPtr
 A shared pointer to a multi classes samples container type definition.
 

Public Member Functions

bool CalculatingLambdaClass (void)
 
bool CalculatingLambdaRegion (void)
 
bool execute (void)
 
 GammaModel ()
 Constructor.
 
bool GettingStatisticalTests (void)
 
bool GettingStochasticDistances (void)
 
bool LoadingSamples (void)
 
 ~GammaModel ()
 Destructor.
 

Public Attributes

double m_betaValue
 Beta value for Renyi distance type.
 
std::vector< unsigned int > m_classesIDT
 Training class ID.
 
std::vector< ClassIDTm_classesIndex2IDLambda
 A class index ordered vector of classes IDs for Lambda parameter.
 
double m_ENL
 Equivalent Number Look type.
 
te::rst::Rasterm_inputRasterPtr
 Input raster.
 
std::vector< unsigned int > m_inputRastersBands
 Bands to process.
 
unsigned int m_lagX
 The horizontal correlation value.
 
unsigned int m_lagY
 The vertical correlation value.
 
std::vector< std::vector< double > > m_lambdaClassesParameters
 Lambda classes parameter.
 
std::vector< double > m_lambdaRegionsParameters
 Lambda regions parameter.
 
std::vector< int > m_numberOfSamples
 
std::vector< te::gm::Polygonm_polygonSamplesT
 Training samples polygons.
 
std::vector< std::vector< double > > m_polygonSamplesTNew
 Training samples polygons.
 
std::vector< te::gm::Polygon * > m_polygonsSegImage
 Polygons of segmented image.
 
std::vector< std::vector< double > > m_pValue
 P-values container.
 
std::vector< double > m_regionsSize
 Size of regions.
 
std::vector< double > m_samplesSize
 Size of sample containers.
 
double m_significanceLevel
 The significance level.
 
unsigned int m_sourcesNumber
 Number of sources.
 
std::vector< std::vector< double > > m_statisticalTest
 Statistical test container.
 
std::vector< std::vector< double > > m_stochasticDistance
 Stochastic distance container.
 
std::string m_stochasticDistanceType
 The stochastic distance type definition.
 
MClassesSamplesCTPtr m_trainSamplesPtr
 A shared pointer to a always-valid structure where training samples are stored.
 

Detailed Description

Gamma model data manipulation.

Definition at line 49 of file GammaModel.h.

Member Typedef Documentation

◆ ClassIDT

CLass ID type definiton.

Definition at line 61 of file GammaModel.h.

◆ ClassSamplesContainerT

Class samples container type definition.

Definition at line 71 of file GammaModel.h.

◆ ClassSampleT

typedef std::vector< double > te::rp::radar::GammaModel::ClassSampleT

Class sample type definition.

Definition at line 69 of file GammaModel.h.

◆ MClassesSamplesCT

Multi-classes samples container type definition.

Definition at line 73 of file GammaModel.h.

◆ MClassesSamplesCTPtr

A shared pointer to a multi classes samples container type definition.

Definition at line 75 of file GammaModel.h.

Constructor & Destructor Documentation

◆ GammaModel()

te::rp::radar::GammaModel::GammaModel ( )

Constructor.

◆ ~GammaModel()

te::rp::radar::GammaModel::~GammaModel ( )

Destructor.

Member Function Documentation

◆ CalculatingLambdaClass()

bool te::rp::radar::GammaModel::CalculatingLambdaClass ( void  )

◆ CalculatingLambdaRegion()

bool te::rp::radar::GammaModel::CalculatingLambdaRegion ( void  )

◆ execute()

bool te::rp::radar::GammaModel::execute ( void  )

◆ GettingStatisticalTests()

bool te::rp::radar::GammaModel::GettingStatisticalTests ( void  )

◆ GettingStochasticDistances()

bool te::rp::radar::GammaModel::GettingStochasticDistances ( void  )

◆ LoadingSamples()

bool te::rp::radar::GammaModel::LoadingSamples ( void  )

Member Data Documentation

◆ m_betaValue

double te::rp::radar::GammaModel::m_betaValue

Beta value for Renyi distance type.

Definition at line 101 of file GammaModel.h.

◆ m_classesIDT

std::vector< unsigned int > te::rp::radar::GammaModel::m_classesIDT

Training class ID.

Definition at line 63 of file GammaModel.h.

◆ m_classesIndex2IDLambda

std::vector< ClassIDT > te::rp::radar::GammaModel::m_classesIndex2IDLambda

A class index ordered vector of classes IDs for Lambda parameter.

Definition at line 79 of file GammaModel.h.

◆ m_ENL

double te::rp::radar::GammaModel::m_ENL

Equivalent Number Look type.

Definition at line 85 of file GammaModel.h.

◆ m_inputRasterPtr

te::rst::Raster* te::rp::radar::GammaModel::m_inputRasterPtr

Input raster.

Definition at line 55 of file GammaModel.h.

◆ m_inputRastersBands

std::vector< unsigned int > te::rp::radar::GammaModel::m_inputRastersBands

Bands to process.

Definition at line 57 of file GammaModel.h.

◆ m_lagX

unsigned int te::rp::radar::GammaModel::m_lagX

The horizontal correlation value.

Definition at line 87 of file GammaModel.h.

◆ m_lagY

unsigned int te::rp::radar::GammaModel::m_lagY

The vertical correlation value.

Definition at line 89 of file GammaModel.h.

◆ m_lambdaClassesParameters

std::vector< std::vector< double > > te::rp::radar::GammaModel::m_lambdaClassesParameters

Lambda classes parameter.

Definition at line 81 of file GammaModel.h.

◆ m_lambdaRegionsParameters

std::vector< double > te::rp::radar::GammaModel::m_lambdaRegionsParameters

Lambda regions parameter.

Definition at line 83 of file GammaModel.h.

◆ m_numberOfSamples

std::vector< int > te::rp::radar::GammaModel::m_numberOfSamples

Definition at line 67 of file GammaModel.h.

◆ m_polygonSamplesT

std::vector< te::gm::Polygon > te::rp::radar::GammaModel::m_polygonSamplesT

Training samples polygons.

Definition at line 65 of file GammaModel.h.

◆ m_polygonSamplesTNew

std::vector< std::vector< double > > te::rp::radar::GammaModel::m_polygonSamplesTNew

Training samples polygons.

Definition at line 66 of file GammaModel.h.

◆ m_polygonsSegImage

std::vector< te::gm::Polygon* > te::rp::radar::GammaModel::m_polygonsSegImage

Polygons of segmented image.

Definition at line 59 of file GammaModel.h.

◆ m_pValue

std::vector< std::vector< double > > te::rp::radar::GammaModel::m_pValue

P-values container.

Definition at line 99 of file GammaModel.h.

◆ m_regionsSize

std::vector< double > te::rp::radar::GammaModel::m_regionsSize

Size of regions.

Definition at line 103 of file GammaModel.h.

◆ m_samplesSize

std::vector< double > te::rp::radar::GammaModel::m_samplesSize

Size of sample containers.

Definition at line 105 of file GammaModel.h.

◆ m_significanceLevel

double te::rp::radar::GammaModel::m_significanceLevel

The significance level.

Definition at line 91 of file GammaModel.h.

◆ m_sourcesNumber

unsigned int te::rp::radar::GammaModel::m_sourcesNumber

Number of sources.

Definition at line 53 of file GammaModel.h.

◆ m_statisticalTest

std::vector< std::vector< double > > te::rp::radar::GammaModel::m_statisticalTest

Statistical test container.

Definition at line 97 of file GammaModel.h.

◆ m_stochasticDistance

std::vector< std::vector< double > > te::rp::radar::GammaModel::m_stochasticDistance

Stochastic distance container.

Definition at line 95 of file GammaModel.h.

◆ m_stochasticDistanceType

std::string te::rp::radar::GammaModel::m_stochasticDistanceType

The stochastic distance type definition.

Definition at line 93 of file GammaModel.h.

◆ m_trainSamplesPtr

MClassesSamplesCTPtr te::rp::radar::GammaModel::m_trainSamplesPtr

A shared pointer to a always-valid structure where training samples are stored.

Definition at line 77 of file GammaModel.h.


The documentation for this class was generated from the following file: