A maximum likelihood estimation strategy for classification (a.k.a. MaxVer in portuguese).
More...
#include <MaxLikelihood.h>
|
bool | classify (const InputAdaptor< double > &input, const std::vector< unsigned int > &attributesIndices, const std::vector< double > &inputNoDataValues, OutputAdaptor< unsigned int > &output, const unsigned int outputIndex, const unsigned int outputNoDataValue, const bool enableProgressInterface) |
| Classify an input iterated data and save the result on the output iterated data.
|
|
bool | getCovMatrixes (std::vector< boost::numeric::ublas::matrix< double > > &covMatrixes) const |
| Get the current classes covariance matrixes.
|
|
bool | getInverseCovMatrixes (std::vector< boost::numeric::ublas::matrix< double > > &invCovMatrixes) const |
| Get the current classes inverse covariance matrixes.
|
|
bool | getLables (std::vector< unsigned int > &classLabels) const |
| Get the current classes labels.
|
|
bool | getMeans (std::vector< std::vector< double > > &classesMeans) const |
| Get the current classes means.
|
|
bool | initialize (const Parameters ¶ms) |
| Initialize this classifier instance with new parameters.
|
|
| MaxLikelihood () |
|
bool | train (const InputAdaptor< double > &samples, const std::vector< unsigned int > &attributesIndices, const std::vector< unsigned int > &sampleLabels, const bool enableProgressInterface) |
| Train this classifier instance using the initialization parameters and the suppied train data.
|
|
| ~MaxLikelihood () |
|
|
void | reset () |
| Reset this instance to its initial state.
|
|
A maximum likelihood estimation strategy for classification (a.k.a. MaxVer in portuguese).
- Note
- Reference: Erthal, G.J.; Frery, A.C. Segmentação de imagens multiespectrais pelo algoritmo ICM:integração ao ambiente SPRING. In: Simpósio Brasileiro de Computação Gráfica eProcessamento de Imagens-SIBGRAP, 6., Recife, 1993. Comunicações. Recife:SBC/UFPe, 1993. p. 33-36.
Definition at line 55 of file MaxLikelihood.h.
◆ MaxLikelihood()
te::cl::MaxLikelihood::MaxLikelihood |
( |
| ) |
|
◆ ~MaxLikelihood()
te::cl::MaxLikelihood::~MaxLikelihood |
( |
| ) |
|
◆ classify()
bool te::cl::MaxLikelihood::classify |
( |
const InputAdaptor< double > & |
input, |
|
|
const std::vector< unsigned int > & |
attributesIndices, |
|
|
const std::vector< double > & |
inputNoDataValues, |
|
|
OutputAdaptor< unsigned int > & |
output, |
|
|
const unsigned int |
outputIndex, |
|
|
const unsigned int |
outputNoDataValue, |
|
|
const bool |
enableProgressInterface |
|
) |
| |
Classify an input iterated data and save the result on the output iterated data.
- Parameters
-
input | Input data to be classified. |
attributesIndices | The attributes indexes to processe from the iterated train data. |
inputNoDataValues | A vector of no-data values for each attribute dimension or an empty vector if no-data values are not used. |
output | Output classified data. |
outputIndex | The output attribute index. |
outputNoDataValue | A output label value to use when dealing with input no-data. |
enableProgressInterface | Enable/disable the use of a proress interfece. |
◆ getCovMatrixes()
bool te::cl::MaxLikelihood::getCovMatrixes |
( |
std::vector< boost::numeric::ublas::matrix< double > > & |
covMatrixes | ) |
const |
Get the current classes covariance matrixes.
- Parameters
-
covMatrixes | A vector to return the current classes covariance matrixes. |
- Returns
- true if ok, false on errors.
◆ getInverseCovMatrixes()
bool te::cl::MaxLikelihood::getInverseCovMatrixes |
( |
std::vector< boost::numeric::ublas::matrix< double > > & |
invCovMatrixes | ) |
const |
Get the current classes inverse covariance matrixes.
- Parameters
-
invCovMatrixes | A vector to return the current classes inverse covariance matrixes. |
- Returns
- true if ok, false on errors.
◆ getLables()
bool te::cl::MaxLikelihood::getLables |
( |
std::vector< unsigned int > & |
classLabels | ) |
const |
Get the current classes labels.
- Parameters
-
classesMeans | A vector to return the current classes labels. |
- Returns
- true if ok, false on errors.
◆ getMeans()
bool te::cl::MaxLikelihood::getMeans |
( |
std::vector< std::vector< double > > & |
classesMeans | ) |
const |
Get the current classes means.
- Parameters
-
classesMeans | A vector to return the current classes means. |
- Returns
- true if ok, false on errors.
◆ initialize()
bool te::cl::MaxLikelihood::initialize |
( |
const Parameters & |
params | ) |
|
Initialize this classifier instance with new parameters.
- Parameters
-
params | New initialization parameters. |
◆ reset()
void te::cl::MaxLikelihood::reset |
( |
| ) |
|
|
protected |
Reset this instance to its initial state.
◆ train()
bool te::cl::MaxLikelihood::train |
( |
const InputAdaptor< double > & |
samples, |
|
|
const std::vector< unsigned int > & |
attributesIndices, |
|
|
const std::vector< unsigned int > & |
sampleLabels, |
|
|
const bool |
enableProgressInterface |
|
) |
| |
Train this classifier instance using the initialization parameters and the suppied train data.
- Parameters
-
samples | Train data samples. |
attributesIndices | The attributes indexes to processe from the iterated train data. |
sampleLabels | The sample lables for each iterated train data element. |
enableProgressInterface | Enable/disable the use of a proress interfece. |
◆ m_classesCovarianceInvMatrixes
std::vector< boost::numeric::ublas::matrix< double > > te::cl::MaxLikelihood::m_classesCovarianceInvMatrixes |
|
protected |
◆ m_classesCovarianceMatrixes
std::vector< boost::numeric::ublas::matrix< double > > te::cl::MaxLikelihood::m_classesCovarianceMatrixes |
|
protected |
◆ m_classesMeans
std::vector< std::vector< double > > te::cl::MaxLikelihood::m_classesMeans |
|
protected |
◆ m_classesOptizedMaxLikelihoodDiscriminantTerm
std::vector< double > te::cl::MaxLikelihood::m_classesOptizedMaxLikelihoodDiscriminantTerm |
|
protected |
◆ m_classLabels
std::vector<unsigned int> te::cl::MaxLikelihood::m_classLabels |
|
protected |
◆ m_isInitialized
bool te::cl::MaxLikelihood::m_isInitialized |
|
protected |
◆ m_parameters
The documentation for this class was generated from the following file:
- /home/castejon/castejon_files/develop/terralib5/git_release/src/terralib/classification/MaxLikelihood.h