Classifier Parameters. More...
#include <ClassifierEMStrategy.h>
Public Member Functions | |
AbstractParameters * | clone () const |
Create a clone copy of this instance. More... | |
const Parameters & | operator= (const Parameters ¶ms) |
Parameters () | |
void | reset () throw ( te::rp::Exception ) |
Clear all internal allocated resources and reset the parameters instance to its initial state. More... | |
~Parameters () | |
Public Attributes | |
std::vector< std::vector< double > > | m_clustersMeans |
The previously estimated means of the clusters (optional). More... | |
double | m_epsilon |
The stop criteria. When the clusters change in a value smaller then epsilon, the convergence is achieved. More... | |
unsigned int | m_maxInputPoints |
The maximum number of points used to estimate the clusters (default = 1000). More... | |
unsigned int | m_maxIterations |
The maximum of iterations (E/M steps) to perform if convergence is not achieved. More... | |
unsigned int | m_numberOfClusters |
The number of clusters (classes) to estimate in the image. More... | |
Definition at line 67 of file ClassifierEMStrategy.h.
te::rp::ClassifierEMStrategy::Parameters::Parameters | ( | ) |
te::rp::ClassifierEMStrategy::Parameters::~Parameters | ( | ) |
|
virtual |
Create a clone copy of this instance.
Implements te::common::AbstractParameters.
const Parameters& te::rp::ClassifierEMStrategy::Parameters::operator= | ( | const Parameters & | params | ) |
|
virtual |
Clear all internal allocated resources and reset the parameters instance to its initial state.
Implements te::common::AbstractParameters.
std::vector<std::vector<double> > te::rp::ClassifierEMStrategy::Parameters::m_clustersMeans |
The previously estimated means of the clusters (optional).
Definition at line 75 of file ClassifierEMStrategy.h.
double te::rp::ClassifierEMStrategy::Parameters::m_epsilon |
The stop criteria. When the clusters change in a value smaller then epsilon, the convergence is achieved.
Definition at line 74 of file ClassifierEMStrategy.h.
unsigned int te::rp::ClassifierEMStrategy::Parameters::m_maxInputPoints |
The maximum number of points used to estimate the clusters (default = 1000).
Definition at line 73 of file ClassifierEMStrategy.h.
unsigned int te::rp::ClassifierEMStrategy::Parameters::m_maxIterations |
The maximum of iterations (E/M steps) to perform if convergence is not achieved.
Definition at line 72 of file ClassifierEMStrategy.h.
unsigned int te::rp::ClassifierEMStrategy::Parameters::m_numberOfClusters |
The number of clusters (classes) to estimate in the image.
Definition at line 71 of file ClassifierEMStrategy.h.