Classifier Parameters. More...
#include <KMeans.h>
 
  
 | Public Member Functions | |
| AbstractParameters * | clone () const | 
| Create a clone copy of this instance.  More... | |
| const Parameters & | operator= (const Parameters ¶ms) | 
| Parameters () | |
| void | reset () throw (te::cl::Exception) | 
| Clear all internal allocated resources and reset the parameters instance to its initial state.  More... | |
| ~Parameters () | |
| Public Attributes | |
| double | m_epsilon | 
| The stop criteria. When the clusters change in a value smaller then epsilon, the convergence is achieved.  More... | |
| unsigned int | m_K | 
| The number of clusters (means) to detect in image.  More... | |
| unsigned int | m_maxIterations | 
| The maximum of iterations to perform if convergence is not achieved.  More... | |
Classifier Parameters.
| te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::Parameters | ( | ) | 
Definition at line 125 of file KMeans.h.
References te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::reset().
| te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::~Parameters | ( | ) | 
| 
 | virtual | 
Create a clone copy of this instance.
Implements te::common::AbstractParameters.
| const te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters & te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::operator= | ( | const Parameters & | params | ) | 
| 
 | virtual | |||||||||||||
Clear all internal allocated resources and reset the parameters instance to its initial state.
Implements te::common::AbstractParameters.
Definition at line 148 of file KMeans.h.
Referenced by te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::operator=(), and te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::Parameters().
| double te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::m_epsilon | 
The stop criteria. When the clusters change in a value smaller then epsilon, the convergence is achieved.
Definition at line 77 of file KMeans.h.
Referenced by te::cl::KMeans< TTRAIN, TCLASSIFY >::initialize(), te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::operator=(), and te::cl::KMeans< TTRAIN, TCLASSIFY >::train().
| unsigned int te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::m_K | 
The number of clusters (means) to detect in image.
Definition at line 75 of file KMeans.h.
Referenced by te::cl::KMeans< TTRAIN, TCLASSIFY >::getClassification(), te::cl::KMeans< TTRAIN, TCLASSIFY >::initialize(), te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::operator=(), and te::cl::KMeans< TTRAIN, TCLASSIFY >::train().
| unsigned int te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::m_maxIterations | 
The maximum of iterations to perform if convergence is not achieved.
Definition at line 76 of file KMeans.h.
Referenced by te::cl::KMeans< TTRAIN, TCLASSIFY >::initialize(), te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::operator=(), and te::cl::KMeans< TTRAIN, TCLASSIFY >::train().