Classifier Parameters. More...
#include <KMeans.h>
Public Member Functions | |
AbstractParameters * | clone () const |
Create a clone copy of this instance. More... | |
const Parameters & | operator= (const Parameters ¶ms) |
Parameters () | |
void | reset () throw (te::cl::Exception) |
Clear all internal allocated resources and reset the parameters instance to its initial state. More... | |
~Parameters () | |
Public Attributes | |
double | m_epsilon |
The stop criteria. When the clusters change in a value smaller then epsilon, the convergence is achieved. More... | |
unsigned int | m_K |
The number of clusters (means) to detect in image. More... | |
unsigned int | m_maxIterations |
The maximum of iterations to perform if convergence is not achieved. More... | |
Classifier Parameters.
te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::Parameters | ( | ) |
Definition at line 125 of file KMeans.h.
References te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::reset().
te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::~Parameters | ( | ) |
|
virtual |
Create a clone copy of this instance.
Implements te::common::AbstractParameters.
const te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters & te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::operator= | ( | const Parameters & | params | ) |
|
virtual |
Clear all internal allocated resources and reset the parameters instance to its initial state.
Implements te::common::AbstractParameters.
Definition at line 148 of file KMeans.h.
Referenced by te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::operator=(), and te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::Parameters().
double te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::m_epsilon |
The stop criteria. When the clusters change in a value smaller then epsilon, the convergence is achieved.
Definition at line 77 of file KMeans.h.
Referenced by te::cl::KMeans< TTRAIN, TCLASSIFY >::initialize(), te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::operator=(), and te::cl::KMeans< TTRAIN, TCLASSIFY >::train().
unsigned int te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::m_K |
The number of clusters (means) to detect in image.
Definition at line 75 of file KMeans.h.
Referenced by te::cl::KMeans< TTRAIN, TCLASSIFY >::getClassification(), te::cl::KMeans< TTRAIN, TCLASSIFY >::initialize(), te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::operator=(), and te::cl::KMeans< TTRAIN, TCLASSIFY >::train().
unsigned int te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::m_maxIterations |
The maximum of iterations to perform if convergence is not achieved.
Definition at line 76 of file KMeans.h.
Referenced by te::cl::KMeans< TTRAIN, TCLASSIFY >::initialize(), te::cl::KMeans< TTRAIN, TCLASSIFY >::Parameters::operator=(), and te::cl::KMeans< TTRAIN, TCLASSIFY >::train().