MAP strategy for classification.
More...
#include <MAP.h>
|
bool | classify (const InputAdaptor< double > &input, const std::vector< unsigned int > &attributesIndices, const std::vector< double > &inputNoDataValues, OutputAdaptor< unsigned int > &output, const unsigned int outputIndex, const double outputNoDataValue, const bool enableProgressInterface) |
| Classify an input iterated data and save the result on the output iterated data. More...
|
|
const ModelParameters & | getModelParams () |
| Returns the current model parameters. More...
|
|
bool | initialize (const Parameters ¶ms) |
| Initialize this classifier instance with new parameters (further training is required). More...
|
|
bool | initialize (const Parameters ¶ms, const ModelParameters &modelParams) |
| Initialize this classifier instance with new model parameters (further training not required). More...
|
|
| MAP () |
|
bool | train (const InputAdaptor< double > &samples, const std::vector< unsigned int > &attributesIndices, const std::vector< unsigned int > &sampleLabels, const bool enableProgressInterface) |
| Train this classifier instance using the initialization parameters and the suppied train data. More...
|
|
| ~MAP () |
|
|
bool | getPrioriProbabilities (const InputAdaptor< double > &input, const std::vector< unsigned int > &attributesIndices, std::vector< double > &prioriProbs) const |
| Calculate priori probabilities by pre-classifying the input data. More...
|
|
void | reset () |
| Reset this instance to its initial state. More...
|
|
MAP strategy for classification.
Definition at line 54 of file MAP.h.
◆ MAP()
◆ ~MAP()
◆ classify()
bool te::cl::MAP::classify |
( |
const InputAdaptor< double > & |
input, |
|
|
const std::vector< unsigned int > & |
attributesIndices, |
|
|
const std::vector< double > & |
inputNoDataValues, |
|
|
OutputAdaptor< unsigned int > & |
output, |
|
|
const unsigned int |
outputIndex, |
|
|
const double |
outputNoDataValue, |
|
|
const bool |
enableProgressInterface |
|
) |
| |
Classify an input iterated data and save the result on the output iterated data.
- Parameters
-
input | Input data to be classified. |
attributesIndices | The attributes indexes to processe from the iterated train data. |
inputNoDataValues | A vector of no-data values for each attribute dimension or an empty vector if no-data values are not used. |
output | Output classified data. |
outputIndex | The output attribute index. |
outputNoDataValue | A output label value to use when dealing with input no-data. |
enableProgressInterface | Enable/disable the use of a proress interfece. |
◆ getModelParams()
Returns the current model parameters.
- Returns
- Returns the current model parameters.
◆ getPrioriProbabilities()
bool te::cl::MAP::getPrioriProbabilities |
( |
const InputAdaptor< double > & |
input, |
|
|
const std::vector< unsigned int > & |
attributesIndices, |
|
|
std::vector< double > & |
prioriProbs |
|
) |
| const |
|
protected |
Calculate priori probabilities by pre-classifying the input data.
- Parameters
-
input | Input data to be classified. |
attributesIndices | The attributes indexes to processe from the iterated train data. |
prioriProbs | Calculated priori-probabilities. |
◆ initialize() [1/2]
bool te::cl::MAP::initialize |
( |
const Parameters & |
params | ) |
|
Initialize this classifier instance with new parameters (further training is required).
- Parameters
-
params | New initialization parameters. |
◆ initialize() [2/2]
Initialize this classifier instance with new model parameters (further training not required).
- Parameters
-
params | New initialization parameters. |
modelParams | New model parameters. |
◆ reset()
void te::cl::MAP::reset |
( |
| ) |
|
|
protected |
Reset this instance to its initial state.
◆ train()
bool te::cl::MAP::train |
( |
const InputAdaptor< double > & |
samples, |
|
|
const std::vector< unsigned int > & |
attributesIndices, |
|
|
const std::vector< unsigned int > & |
sampleLabels, |
|
|
const bool |
enableProgressInterface |
|
) |
| |
Train this classifier instance using the initialization parameters and the suppied train data.
- Parameters
-
samples | Train data samples. |
attributesIndices | The attributes indexes to processe from the iterated train data. |
sampleLabels | The sample lables for each iterated train data element. |
enableProgressInterface | Enable/disable the use of a proress interfece. |
◆ m_classesCovarianceInvMatrixes
std::vector< boost::numeric::ublas::matrix< double > > te::cl::MAP::m_classesCovarianceInvMatrixes |
|
protected |
Classes covariance inverse matrixes.
Definition at line 169 of file MAP.h.
◆ m_classesOptizedMAPDiscriminantTerm
std::vector< double > te::cl::MAP::m_classesOptizedMAPDiscriminantTerm |
|
protected |
An optimized portion of the MAP discriminant function.
Definition at line 170 of file MAP.h.
◆ m_isInitialized
bool te::cl::MAP::m_isInitialized |
|
protected |
True if this instance is initialized.
Definition at line 166 of file MAP.h.
◆ m_modelParameters
◆ m_parameters
Internal execution parameters.
Definition at line 167 of file MAP.h.
The documentation for this class was generated from the following file:
- /home/castejon/castejon_files/develop/terralib5/git_release/src/terralib/classification/MAP.h