26 #ifndef __TERRALIB_CLASSIFICATION_INTERNAL_MAP_H
27 #define __TERRALIB_CLASSIFICATION_INTERNAL_MAP_H
30 #include "../common/AbstractParameters.h"
31 #include "../common/MatrixUtils.h"
32 #include "../common/progress/TaskProgress.h"
42 #include <boost/numeric/ublas/matrix.hpp>
80 AbstractParameters*
clone()
const;
136 const std::vector<unsigned int>& attributesIndices,
137 const std::vector<unsigned int>& sampleLabels,
138 const bool enableProgressInterface) ;
151 const std::vector<unsigned int>& attributesIndices,
152 const std::vector< double >& inputNoDataValues,
154 const unsigned int outputIndex,
155 const double outputNoDataValue,
156 const bool enableProgressInterface) ;
182 const std::vector<unsigned int>& attributesIndices,
183 std::vector< double >& prioriProbs )
const;
void reset()
Clear all internal allocated resources and reset the parameters instance to its initial state.
const ModelParameters & operator=(const ModelParameters ¶ms)
AbstractParameters * clone() const
Create a clone copy of this instance.
std::vector< std::vector< double > > m_classesMeans
Classes means;.
std::vector< boost::numeric::ublas::matrix< double > > m_classesCovarianceMatrixes
Classes covariance matrixes.
std::vector< unsigned int > m_classLabels
class labels
std::vector< double > m_prioriProbs
Priori probabilities, one for each class. Values from 0 to 1 (use an empty vector to allow internal c...
AbstractParameters * clone() const
Create a clone copy of this instance.
void reset()
Clear all internal allocated resources and reset the parameters instance to its initial state.
const Parameters & operator=(const Parameters ¶ms)
unsigned int m_prioriCalcSampleStep
A positive non-zero sample step used when calculating piori probabilities (default:5 - 1/5 of samples...
MAP strategy for classification.
bool initialize(const Parameters ¶ms)
Initialize this classifier instance with new parameters (further training is required).
bool classify(const InputAdaptor< double > &input, const std::vector< unsigned int > &attributesIndices, const std::vector< double > &inputNoDataValues, OutputAdaptor< unsigned int > &output, const unsigned int outputIndex, const double outputNoDataValue, const bool enableProgressInterface)
Classify an input iterated data and save the result on the output iterated data.
std::vector< boost::numeric::ublas::matrix< double > > m_classesCovarianceInvMatrixes
Classes covariance inverse matrixes.
bool getPrioriProbabilities(const InputAdaptor< double > &input, const std::vector< unsigned int > &attributesIndices, std::vector< double > &prioriProbs) const
Calculate priori probabilities by pre-classifying the input data.
bool m_isInitialized
True if this instance is initialized.
const ModelParameters & getModelParams()
Returns the current model parameters.
bool initialize(const Parameters ¶ms, const ModelParameters &modelParams)
Initialize this classifier instance with new model parameters (further training not required).
std::vector< double > m_classesOptizedMAPDiscriminantTerm
An optimized portion of the MAP discriminant function.
ModelParameters m_modelParameters
Trained model parameters.
Parameters m_parameters
Internal execution parameters.
void reset()
Reset this instance to its initial state.
bool train(const InputAdaptor< double > &samples, const std::vector< unsigned int > &attributesIndices, const std::vector< unsigned int > &sampleLabels, const bool enableProgressInterface)
Train this classifier instance using the initialization parameters and the suppied train data.
Classifiers output data adaptor.
Abstract parameters base interface.
#define TECLEXPORT
You can use this macro in order to export/import classes and functions from this module.
Proxy configuration file for TerraView (see terraview_config.h).
An exception class for the XML module.