Gaussian model data manipulation. More...
#include <GaussianModel.h>
Public Types | |
typedef unsigned int | ClassIDT |
CLass ID type definiton. More... | |
typedef std::vector< ClassSampleT > | ClassSamplesContainerT |
Class samples container type definition. More... | |
typedef std::vector< double > | ClassSampleT |
Class sample type definition. More... | |
typedef std::map< ClassIDT, ClassSamplesContainerT > | MClassesSamplesCT |
Multi-classes samples container type definition. More... | |
typedef boost::shared_ptr< MClassesSamplesCT > | MClassesSamplesCTPtr |
A shared pointer to a multi classes samples container type definition. More... | |
Public Member Functions | |
bool | CalculatingMuAndSigmaRegion (void) |
bool | CalculatingMuClass (void) |
bool | CalculatingSigmaClass () |
boost::numeric::ublas::matrix< double > | checkCovarianceMatrix (boost::numeric::ublas::matrix< double >) |
bool | execute (void) |
GaussianModel () | |
Constructor. More... | |
bool | GettingStatisticalTests (void) |
bool | GettingStochasticDistances (void) |
bool | LoadingSamples (void) |
~GaussianModel () | |
Destructor. More... | |
Public Attributes | |
std::vector< boost::numeric::ublas::matrix< double > > | m_classesCovarianceMatrixes |
Sigma classes parameter. More... | |
std::vector< unsigned int > | m_classesIDT |
Training class ID. More... | |
std::vector< ClassIDT > | m_classesIndex2IDMu |
A class index ordered vector of classes IDs for Mu parameter. More... | |
te::rst::Raster * | m_inputRasterPtr |
Input raster. More... | |
std::vector< unsigned int > | m_inputRastersBands |
Bands to process. More... | |
unsigned int | m_lagX |
The horizontal correlation value. More... | |
unsigned int | m_lagY |
The vertical correlation value. More... | |
std::vector< std::vector< double > > | m_muClassesParameters |
Mu classes parameter. More... | |
std::vector< std::vector< double > > | m_muRegionsParameter |
Mu Regions parameter. More... | |
std::vector< int > | m_numberOfSamples |
std::vector< te::gm::Polygon > | m_polygonSamplesT |
Training samples polygons. More... | |
std::vector< std::vector< double > > | m_polygonSamplesTNew |
Training samples polygons. More... | |
std::vector< te::gm::Polygon * > | m_polygonsSegImage |
Polygons of segmented image. More... | |
std::vector< std::vector< double > > | m_pValue |
P-values container. More... | |
std::vector< boost::numeric::ublas::matrix< double > > | m_regionsCovarianceMatrixes |
Sigma regions parameter. More... | |
std::vector< double > | m_regionsSize |
Size of regions. More... | |
std::vector< double > | m_samplesSize |
Size of sample containers. More... | |
double | m_significanceLevel |
The significance level. More... | |
unsigned int | m_sourcesNumber |
Number of sources. More... | |
std::vector< std::vector< double > > | m_statisticalTest |
Statistical test container. More... | |
std::vector< std::vector< double > > | m_stochasticDistance |
Stochastic distance container. More... | |
std::string | m_stochasticDistanceType |
The stochastic distance type definition. More... | |
MClassesSamplesCTPtr | m_trainSamplesPtr |
A shared pointer to a always-valid structure where training samples are stored. More... | |
Gaussian model data manipulation.
Definition at line 51 of file GaussianModel.h.
typedef unsigned int te::rp::radar::GaussianModel::ClassIDT |
CLass ID type definiton.
Definition at line 69 of file GaussianModel.h.
typedef std::vector< ClassSampleT > te::rp::radar::GaussianModel::ClassSamplesContainerT |
Class samples container type definition.
Definition at line 79 of file GaussianModel.h.
typedef std::vector< double > te::rp::radar::GaussianModel::ClassSampleT |
Class sample type definition.
Definition at line 77 of file GaussianModel.h.
typedef std::map< ClassIDT, ClassSamplesContainerT > te::rp::radar::GaussianModel::MClassesSamplesCT |
Multi-classes samples container type definition.
Definition at line 81 of file GaussianModel.h.
typedef boost::shared_ptr<MClassesSamplesCT> te::rp::radar::GaussianModel::MClassesSamplesCTPtr |
A shared pointer to a multi classes samples container type definition.
Definition at line 83 of file GaussianModel.h.
te::rp::radar::GaussianModel::GaussianModel | ( | ) |
Constructor.
te::rp::radar::GaussianModel::~GaussianModel | ( | ) |
Destructor.
bool te::rp::radar::GaussianModel::CalculatingMuAndSigmaRegion | ( | void | ) |
bool te::rp::radar::GaussianModel::CalculatingMuClass | ( | void | ) |
bool te::rp::radar::GaussianModel::CalculatingSigmaClass | ( | ) |
boost::numeric::ublas::matrix< double > te::rp::radar::GaussianModel::checkCovarianceMatrix | ( | boost::numeric::ublas::matrix< double > | ) |
bool te::rp::radar::GaussianModel::execute | ( | void | ) |
bool te::rp::radar::GaussianModel::GettingStatisticalTests | ( | void | ) |
bool te::rp::radar::GaussianModel::GettingStochasticDistances | ( | void | ) |
bool te::rp::radar::GaussianModel::LoadingSamples | ( | void | ) |
std::vector< boost::numeric::ublas::matrix< double > > te::rp::radar::GaussianModel::m_classesCovarianceMatrixes |
Sigma classes parameter.
Definition at line 91 of file GaussianModel.h.
std::vector< unsigned int > te::rp::radar::GaussianModel::m_classesIDT |
Training class ID.
Definition at line 71 of file GaussianModel.h.
std::vector< ClassIDT > te::rp::radar::GaussianModel::m_classesIndex2IDMu |
A class index ordered vector of classes IDs for Mu parameter.
Definition at line 87 of file GaussianModel.h.
te::rst::Raster* te::rp::radar::GaussianModel::m_inputRasterPtr |
Input raster.
Definition at line 59 of file GaussianModel.h.
std::vector< unsigned int > te::rp::radar::GaussianModel::m_inputRastersBands |
Bands to process.
Definition at line 61 of file GaussianModel.h.
unsigned int te::rp::radar::GaussianModel::m_lagX |
The horizontal correlation value.
Definition at line 65 of file GaussianModel.h.
unsigned int te::rp::radar::GaussianModel::m_lagY |
The vertical correlation value.
Definition at line 67 of file GaussianModel.h.
std::vector< std::vector< double > > te::rp::radar::GaussianModel::m_muClassesParameters |
Mu classes parameter.
Definition at line 89 of file GaussianModel.h.
std::vector< std::vector< double > > te::rp::radar::GaussianModel::m_muRegionsParameter |
Mu Regions parameter.
Definition at line 93 of file GaussianModel.h.
std::vector< int > te::rp::radar::GaussianModel::m_numberOfSamples |
Definition at line 75 of file GaussianModel.h.
std::vector< te::gm::Polygon > te::rp::radar::GaussianModel::m_polygonSamplesT |
Training samples polygons.
Definition at line 73 of file GaussianModel.h.
std::vector< std::vector< double > > te::rp::radar::GaussianModel::m_polygonSamplesTNew |
Training samples polygons.
Definition at line 74 of file GaussianModel.h.
std::vector< te::gm::Polygon* > te::rp::radar::GaussianModel::m_polygonsSegImage |
Polygons of segmented image.
Definition at line 63 of file GaussianModel.h.
std::vector< std::vector< double > > te::rp::radar::GaussianModel::m_pValue |
P-values container.
Definition at line 103 of file GaussianModel.h.
std::vector< boost::numeric::ublas::matrix< double > > te::rp::radar::GaussianModel::m_regionsCovarianceMatrixes |
Sigma regions parameter.
Definition at line 95 of file GaussianModel.h.
std::vector< double > te::rp::radar::GaussianModel::m_regionsSize |
Size of regions.
Definition at line 107 of file GaussianModel.h.
std::vector< double > te::rp::radar::GaussianModel::m_samplesSize |
Size of sample containers.
Definition at line 109 of file GaussianModel.h.
double te::rp::radar::GaussianModel::m_significanceLevel |
The significance level.
Definition at line 105 of file GaussianModel.h.
unsigned int te::rp::radar::GaussianModel::m_sourcesNumber |
Number of sources.
Definition at line 57 of file GaussianModel.h.
std::vector< std::vector< double > > te::rp::radar::GaussianModel::m_statisticalTest |
Statistical test container.
Definition at line 101 of file GaussianModel.h.
std::vector< std::vector< double > > te::rp::radar::GaussianModel::m_stochasticDistance |
Stochastic distance container.
Definition at line 99 of file GaussianModel.h.
std::string te::rp::radar::GaussianModel::m_stochasticDistanceType |
The stochastic distance type definition.
Definition at line 97 of file GaussianModel.h.
MClassesSamplesCTPtr te::rp::radar::GaussianModel::m_trainSamplesPtr |
A shared pointer to a always-valid structure where training samples are stored.
Definition at line 85 of file GaussianModel.h.