Loading...
Searching...
No Matches
te::rp::radar::GaussianModel Class Reference

Gaussian model data manipulation. More...

#include <GaussianModel.h>

Public Types

typedef unsigned int ClassIDT
 CLass ID type definiton. More...
 
typedef std::vector< ClassSampleTClassSamplesContainerT
 Class samples container type definition. More...
 
typedef std::vector< double > ClassSampleT
 Class sample type definition. More...
 
typedef std::map< ClassIDT, ClassSamplesContainerTMClassesSamplesCT
 Multi-classes samples container type definition. More...
 
typedef boost::shared_ptr< MClassesSamplesCTMClassesSamplesCTPtr
 A shared pointer to a multi classes samples container type definition. More...
 

Public Member Functions

bool CalculatingMuAndSigmaRegion (void)
 
bool CalculatingMuClass (void)
 
bool CalculatingSigmaClass ()
 
boost::numeric::ublas::matrix< double > checkCovarianceMatrix (boost::numeric::ublas::matrix< double >)
 
bool execute (void)
 
 GaussianModel ()
 Constructor. More...
 
bool GettingStatisticalTests (void)
 
bool GettingStochasticDistances (void)
 
bool LoadingSamples (void)
 
 ~GaussianModel ()
 Destructor. More...
 

Public Attributes

std::vector< boost::numeric::ublas::matrix< double > > m_classesCovarianceMatrixes
 Sigma classes parameter. More...
 
std::vector< unsigned int > m_classesIDT
 Training class ID. More...
 
std::vector< ClassIDTm_classesIndex2IDMu
 A class index ordered vector of classes IDs for Mu parameter. More...
 
te::rst::Rasterm_inputRasterPtr
 Input raster. More...
 
std::vector< unsigned int > m_inputRastersBands
 Bands to process. More...
 
unsigned int m_lagX
 The horizontal correlation value. More...
 
unsigned int m_lagY
 The vertical correlation value. More...
 
std::vector< std::vector< double > > m_muClassesParameters
 Mu classes parameter. More...
 
std::vector< std::vector< double > > m_muRegionsParameter
 Mu Regions parameter. More...
 
std::vector< int > m_numberOfSamples
 
std::vector< te::gm::Polygonm_polygonSamplesT
 Training samples polygons. More...
 
std::vector< std::vector< double > > m_polygonSamplesTNew
 Training samples polygons. More...
 
std::vector< te::gm::Polygon * > m_polygonsSegImage
 Polygons of segmented image. More...
 
std::vector< std::vector< double > > m_pValue
 P-values container. More...
 
std::vector< boost::numeric::ublas::matrix< double > > m_regionsCovarianceMatrixes
 Sigma regions parameter. More...
 
std::vector< double > m_regionsSize
 Size of regions. More...
 
std::vector< double > m_samplesSize
 Size of sample containers. More...
 
double m_significanceLevel
 The significance level. More...
 
unsigned int m_sourcesNumber
 Number of sources. More...
 
std::vector< std::vector< double > > m_statisticalTest
 Statistical test container. More...
 
std::vector< std::vector< double > > m_stochasticDistance
 Stochastic distance container. More...
 
std::string m_stochasticDistanceType
 The stochastic distance type definition. More...
 
MClassesSamplesCTPtr m_trainSamplesPtr
 A shared pointer to a always-valid structure where training samples are stored. More...
 

Detailed Description

Gaussian model data manipulation.

Definition at line 51 of file GaussianModel.h.

Member Typedef Documentation

◆ ClassIDT

CLass ID type definiton.

Definition at line 69 of file GaussianModel.h.

◆ ClassSamplesContainerT

Class samples container type definition.

Definition at line 79 of file GaussianModel.h.

◆ ClassSampleT

typedef std::vector< double > te::rp::radar::GaussianModel::ClassSampleT

Class sample type definition.

Definition at line 77 of file GaussianModel.h.

◆ MClassesSamplesCT

Multi-classes samples container type definition.

Definition at line 81 of file GaussianModel.h.

◆ MClassesSamplesCTPtr

A shared pointer to a multi classes samples container type definition.

Definition at line 83 of file GaussianModel.h.

Constructor & Destructor Documentation

◆ GaussianModel()

te::rp::radar::GaussianModel::GaussianModel ( )

Constructor.

◆ ~GaussianModel()

te::rp::radar::GaussianModel::~GaussianModel ( )

Destructor.

Member Function Documentation

◆ CalculatingMuAndSigmaRegion()

bool te::rp::radar::GaussianModel::CalculatingMuAndSigmaRegion ( void  )

◆ CalculatingMuClass()

bool te::rp::radar::GaussianModel::CalculatingMuClass ( void  )

◆ CalculatingSigmaClass()

bool te::rp::radar::GaussianModel::CalculatingSigmaClass ( )

◆ checkCovarianceMatrix()

boost::numeric::ublas::matrix< double > te::rp::radar::GaussianModel::checkCovarianceMatrix ( boost::numeric::ublas::matrix< double >  )

◆ execute()

bool te::rp::radar::GaussianModel::execute ( void  )

◆ GettingStatisticalTests()

bool te::rp::radar::GaussianModel::GettingStatisticalTests ( void  )

◆ GettingStochasticDistances()

bool te::rp::radar::GaussianModel::GettingStochasticDistances ( void  )

◆ LoadingSamples()

bool te::rp::radar::GaussianModel::LoadingSamples ( void  )

Member Data Documentation

◆ m_classesCovarianceMatrixes

std::vector< boost::numeric::ublas::matrix< double > > te::rp::radar::GaussianModel::m_classesCovarianceMatrixes

Sigma classes parameter.

Definition at line 91 of file GaussianModel.h.

◆ m_classesIDT

std::vector< unsigned int > te::rp::radar::GaussianModel::m_classesIDT

Training class ID.

Definition at line 71 of file GaussianModel.h.

◆ m_classesIndex2IDMu

std::vector< ClassIDT > te::rp::radar::GaussianModel::m_classesIndex2IDMu

A class index ordered vector of classes IDs for Mu parameter.

Definition at line 87 of file GaussianModel.h.

◆ m_inputRasterPtr

te::rst::Raster* te::rp::radar::GaussianModel::m_inputRasterPtr

Input raster.

Definition at line 59 of file GaussianModel.h.

◆ m_inputRastersBands

std::vector< unsigned int > te::rp::radar::GaussianModel::m_inputRastersBands

Bands to process.

Definition at line 61 of file GaussianModel.h.

◆ m_lagX

unsigned int te::rp::radar::GaussianModel::m_lagX

The horizontal correlation value.

Definition at line 65 of file GaussianModel.h.

◆ m_lagY

unsigned int te::rp::radar::GaussianModel::m_lagY

The vertical correlation value.

Definition at line 67 of file GaussianModel.h.

◆ m_muClassesParameters

std::vector< std::vector< double > > te::rp::radar::GaussianModel::m_muClassesParameters

Mu classes parameter.

Definition at line 89 of file GaussianModel.h.

◆ m_muRegionsParameter

std::vector< std::vector< double > > te::rp::radar::GaussianModel::m_muRegionsParameter

Mu Regions parameter.

Definition at line 93 of file GaussianModel.h.

◆ m_numberOfSamples

std::vector< int > te::rp::radar::GaussianModel::m_numberOfSamples

Definition at line 75 of file GaussianModel.h.

◆ m_polygonSamplesT

std::vector< te::gm::Polygon > te::rp::radar::GaussianModel::m_polygonSamplesT

Training samples polygons.

Definition at line 73 of file GaussianModel.h.

◆ m_polygonSamplesTNew

std::vector< std::vector< double > > te::rp::radar::GaussianModel::m_polygonSamplesTNew

Training samples polygons.

Definition at line 74 of file GaussianModel.h.

◆ m_polygonsSegImage

std::vector< te::gm::Polygon* > te::rp::radar::GaussianModel::m_polygonsSegImage

Polygons of segmented image.

Definition at line 63 of file GaussianModel.h.

◆ m_pValue

std::vector< std::vector< double > > te::rp::radar::GaussianModel::m_pValue

P-values container.

Definition at line 103 of file GaussianModel.h.

◆ m_regionsCovarianceMatrixes

std::vector< boost::numeric::ublas::matrix< double > > te::rp::radar::GaussianModel::m_regionsCovarianceMatrixes

Sigma regions parameter.

Definition at line 95 of file GaussianModel.h.

◆ m_regionsSize

std::vector< double > te::rp::radar::GaussianModel::m_regionsSize

Size of regions.

Definition at line 107 of file GaussianModel.h.

◆ m_samplesSize

std::vector< double > te::rp::radar::GaussianModel::m_samplesSize

Size of sample containers.

Definition at line 109 of file GaussianModel.h.

◆ m_significanceLevel

double te::rp::radar::GaussianModel::m_significanceLevel

The significance level.

Definition at line 105 of file GaussianModel.h.

◆ m_sourcesNumber

unsigned int te::rp::radar::GaussianModel::m_sourcesNumber

Number of sources.

Definition at line 57 of file GaussianModel.h.

◆ m_statisticalTest

std::vector< std::vector< double > > te::rp::radar::GaussianModel::m_statisticalTest

Statistical test container.

Definition at line 101 of file GaussianModel.h.

◆ m_stochasticDistance

std::vector< std::vector< double > > te::rp::radar::GaussianModel::m_stochasticDistance

Stochastic distance container.

Definition at line 99 of file GaussianModel.h.

◆ m_stochasticDistanceType

std::string te::rp::radar::GaussianModel::m_stochasticDistanceType

The stochastic distance type definition.

Definition at line 97 of file GaussianModel.h.

◆ m_trainSamplesPtr

MClassesSamplesCTPtr te::rp::radar::GaussianModel::m_trainSamplesPtr

A shared pointer to a always-valid structure where training samples are stored.

Definition at line 85 of file GaussianModel.h.


The documentation for this class was generated from the following file: