Loading...
Searching...
No Matches
te::rp::radar::GammaModel Class Reference

Gamma model data manipulation. More...

#include <GammaModel.h>

Public Types

typedef unsigned int ClassIDT
 CLass ID type definiton. More...
 
typedef std::vector< ClassSampleTClassSamplesContainerT
 Class samples container type definition. More...
 
typedef std::vector< double > ClassSampleT
 Class sample type definition. More...
 
typedef std::map< ClassIDT, ClassSamplesContainerTMClassesSamplesCT
 Multi-classes samples container type definition. More...
 
typedef boost::shared_ptr< MClassesSamplesCTMClassesSamplesCTPtr
 A shared pointer to a multi classes samples container type definition. More...
 

Public Member Functions

bool CalculatingLambdaClass (void)
 
bool CalculatingLambdaRegion (void)
 
bool execute (void)
 
 GammaModel ()
 Constructor. More...
 
bool GettingStatisticalTests (void)
 
bool GettingStochasticDistances (void)
 
bool LoadingSamples (void)
 
 ~GammaModel ()
 Destructor. More...
 

Public Attributes

double m_betaValue
 Beta value for Renyi distance type. More...
 
std::vector< unsigned int > m_classesIDT
 Training class ID. More...
 
std::vector< ClassIDTm_classesIndex2IDLambda
 A class index ordered vector of classes IDs for Lambda parameter. More...
 
double m_ENL
 Equivalent Number Look type. More...
 
te::rst::Rasterm_inputRasterPtr
 Input raster. More...
 
std::vector< unsigned int > m_inputRastersBands
 Bands to process. More...
 
unsigned int m_lagX
 The horizontal correlation value. More...
 
unsigned int m_lagY
 The vertical correlation value. More...
 
std::vector< std::vector< double > > m_lambdaClassesParameters
 Lambda classes parameter. More...
 
std::vector< double > m_lambdaRegionsParameters
 Lambda regions parameter. More...
 
std::vector< int > m_numberOfSamples
 
std::vector< te::gm::Polygonm_polygonSamplesT
 Training samples polygons. More...
 
std::vector< std::vector< double > > m_polygonSamplesTNew
 Training samples polygons. More...
 
std::vector< te::gm::Polygon * > m_polygonsSegImage
 Polygons of segmented image. More...
 
std::vector< std::vector< double > > m_pValue
 P-values container. More...
 
std::vector< double > m_regionsSize
 Size of regions. More...
 
std::vector< double > m_samplesSize
 Size of sample containers. More...
 
double m_significanceLevel
 The significance level. More...
 
unsigned int m_sourcesNumber
 Number of sources. More...
 
std::vector< std::vector< double > > m_statisticalTest
 Statistical test container. More...
 
std::vector< std::vector< double > > m_stochasticDistance
 Stochastic distance container. More...
 
std::string m_stochasticDistanceType
 The stochastic distance type definition. More...
 
MClassesSamplesCTPtr m_trainSamplesPtr
 A shared pointer to a always-valid structure where training samples are stored. More...
 

Detailed Description

Gamma model data manipulation.

Definition at line 49 of file GammaModel.h.

Member Typedef Documentation

◆ ClassIDT

CLass ID type definiton.

Definition at line 61 of file GammaModel.h.

◆ ClassSamplesContainerT

Class samples container type definition.

Definition at line 71 of file GammaModel.h.

◆ ClassSampleT

typedef std::vector< double > te::rp::radar::GammaModel::ClassSampleT

Class sample type definition.

Definition at line 69 of file GammaModel.h.

◆ MClassesSamplesCT

Multi-classes samples container type definition.

Definition at line 73 of file GammaModel.h.

◆ MClassesSamplesCTPtr

A shared pointer to a multi classes samples container type definition.

Definition at line 75 of file GammaModel.h.

Constructor & Destructor Documentation

◆ GammaModel()

te::rp::radar::GammaModel::GammaModel ( )

Constructor.

◆ ~GammaModel()

te::rp::radar::GammaModel::~GammaModel ( )

Destructor.

Member Function Documentation

◆ CalculatingLambdaClass()

bool te::rp::radar::GammaModel::CalculatingLambdaClass ( void  )

◆ CalculatingLambdaRegion()

bool te::rp::radar::GammaModel::CalculatingLambdaRegion ( void  )

◆ execute()

bool te::rp::radar::GammaModel::execute ( void  )

◆ GettingStatisticalTests()

bool te::rp::radar::GammaModel::GettingStatisticalTests ( void  )

◆ GettingStochasticDistances()

bool te::rp::radar::GammaModel::GettingStochasticDistances ( void  )

◆ LoadingSamples()

bool te::rp::radar::GammaModel::LoadingSamples ( void  )

Member Data Documentation

◆ m_betaValue

double te::rp::radar::GammaModel::m_betaValue

Beta value for Renyi distance type.

Definition at line 101 of file GammaModel.h.

◆ m_classesIDT

std::vector< unsigned int > te::rp::radar::GammaModel::m_classesIDT

Training class ID.

Definition at line 63 of file GammaModel.h.

◆ m_classesIndex2IDLambda

std::vector< ClassIDT > te::rp::radar::GammaModel::m_classesIndex2IDLambda

A class index ordered vector of classes IDs for Lambda parameter.

Definition at line 79 of file GammaModel.h.

◆ m_ENL

double te::rp::radar::GammaModel::m_ENL

Equivalent Number Look type.

Definition at line 85 of file GammaModel.h.

◆ m_inputRasterPtr

te::rst::Raster* te::rp::radar::GammaModel::m_inputRasterPtr

Input raster.

Definition at line 55 of file GammaModel.h.

◆ m_inputRastersBands

std::vector< unsigned int > te::rp::radar::GammaModel::m_inputRastersBands

Bands to process.

Definition at line 57 of file GammaModel.h.

◆ m_lagX

unsigned int te::rp::radar::GammaModel::m_lagX

The horizontal correlation value.

Definition at line 87 of file GammaModel.h.

◆ m_lagY

unsigned int te::rp::radar::GammaModel::m_lagY

The vertical correlation value.

Definition at line 89 of file GammaModel.h.

◆ m_lambdaClassesParameters

std::vector< std::vector< double > > te::rp::radar::GammaModel::m_lambdaClassesParameters

Lambda classes parameter.

Definition at line 81 of file GammaModel.h.

◆ m_lambdaRegionsParameters

std::vector< double > te::rp::radar::GammaModel::m_lambdaRegionsParameters

Lambda regions parameter.

Definition at line 83 of file GammaModel.h.

◆ m_numberOfSamples

std::vector< int > te::rp::radar::GammaModel::m_numberOfSamples

Definition at line 67 of file GammaModel.h.

◆ m_polygonSamplesT

std::vector< te::gm::Polygon > te::rp::radar::GammaModel::m_polygonSamplesT

Training samples polygons.

Definition at line 65 of file GammaModel.h.

◆ m_polygonSamplesTNew

std::vector< std::vector< double > > te::rp::radar::GammaModel::m_polygonSamplesTNew

Training samples polygons.

Definition at line 66 of file GammaModel.h.

◆ m_polygonsSegImage

std::vector< te::gm::Polygon* > te::rp::radar::GammaModel::m_polygonsSegImage

Polygons of segmented image.

Definition at line 59 of file GammaModel.h.

◆ m_pValue

std::vector< std::vector< double > > te::rp::radar::GammaModel::m_pValue

P-values container.

Definition at line 99 of file GammaModel.h.

◆ m_regionsSize

std::vector< double > te::rp::radar::GammaModel::m_regionsSize

Size of regions.

Definition at line 103 of file GammaModel.h.

◆ m_samplesSize

std::vector< double > te::rp::radar::GammaModel::m_samplesSize

Size of sample containers.

Definition at line 105 of file GammaModel.h.

◆ m_significanceLevel

double te::rp::radar::GammaModel::m_significanceLevel

The significance level.

Definition at line 91 of file GammaModel.h.

◆ m_sourcesNumber

unsigned int te::rp::radar::GammaModel::m_sourcesNumber

Number of sources.

Definition at line 53 of file GammaModel.h.

◆ m_statisticalTest

std::vector< std::vector< double > > te::rp::radar::GammaModel::m_statisticalTest

Statistical test container.

Definition at line 97 of file GammaModel.h.

◆ m_stochasticDistance

std::vector< std::vector< double > > te::rp::radar::GammaModel::m_stochasticDistance

Stochastic distance container.

Definition at line 95 of file GammaModel.h.

◆ m_stochasticDistanceType

std::string te::rp::radar::GammaModel::m_stochasticDistanceType

The stochastic distance type definition.

Definition at line 93 of file GammaModel.h.

◆ m_trainSamplesPtr

MClassesSamplesCTPtr te::rp::radar::GammaModel::m_trainSamplesPtr

A shared pointer to a always-valid structure where training samples are stored.

Definition at line 77 of file GammaModel.h.


The documentation for this class was generated from the following file: