A maximum likelihood estimation strategy for classification (a.k.a. MaxVer in portuguese).  
 More...
#include <MaxLikelihood.h>
 | 
| bool  | classify (const InputAdaptor< double > &input, const std::vector< unsigned int > &attributesIndices, const std::vector< double > &inputNoDataValues, OutputAdaptor< unsigned int > &output, const unsigned int outputIndex, const unsigned int outputNoDataValue, const bool enableProgressInterface) | 
|   | Classify an input iterated data and save the result on the output iterated data.  More...
  | 
|   | 
| bool  | getCovMatrixes (std::vector< boost::numeric::ublas::matrix< double > > &covMatrixes) const | 
|   | Get the current classes covariance matrixes.  More...
  | 
|   | 
| bool  | getInverseCovMatrixes (std::vector< boost::numeric::ublas::matrix< double > > &invCovMatrixes) const | 
|   | Get the current classes inverse covariance matrixes.  More...
  | 
|   | 
| bool  | getLables (std::vector< unsigned int > &classLabels) const | 
|   | Get the current classes labels.  More...
  | 
|   | 
| bool  | getMeans (std::vector< std::vector< double > > &classesMeans) const | 
|   | Get the current classes means.  More...
  | 
|   | 
| bool  | initialize (const Parameters ¶ms) | 
|   | Initialize this classifier instance with new parameters.  More...
  | 
|   | 
|   | MaxLikelihood () | 
|   | 
| bool  | train (const InputAdaptor< double > &samples, const std::vector< unsigned int > &attributesIndices, const std::vector< unsigned int > &sampleLabels, const bool enableProgressInterface) | 
|   | Train this classifier instance using the initialization parameters and the suppied train data.  More...
  | 
|   | 
|   | ~MaxLikelihood () | 
|   | 
 | 
| void  | reset () | 
|   | Reset this instance to its initial state.  More...
  | 
|   | 
A maximum likelihood estimation strategy for classification (a.k.a. MaxVer in portuguese). 
- Note
 - Reference: Erthal, G.J.; Frery, A.C. Segmentação de imagens multiespectrais pelo algoritmo ICM:integração ao ambiente SPRING. In: Simpósio Brasileiro de Computação Gráfica eProcessamento de Imagens-SIBGRAP, 6., Recife, 1993. Comunicações. Recife:SBC/UFPe, 1993. p. 33-36. 
 
Definition at line 55 of file MaxLikelihood.h.
 
◆ MaxLikelihood()
      
        
          | te::cl::MaxLikelihood::MaxLikelihood  | 
          ( | 
           | ) | 
           | 
        
      
 
 
◆ ~MaxLikelihood()
      
        
          | te::cl::MaxLikelihood::~MaxLikelihood  | 
          ( | 
           | ) | 
           | 
        
      
 
 
◆ classify()
      
        
          | bool te::cl::MaxLikelihood::classify  | 
          ( | 
          const InputAdaptor< double > &  | 
          input,  | 
        
        
           | 
           | 
          const std::vector< unsigned int > &  | 
          attributesIndices,  | 
        
        
           | 
           | 
          const std::vector< double > &  | 
          inputNoDataValues,  | 
        
        
           | 
           | 
          OutputAdaptor< unsigned int > &  | 
          output,  | 
        
        
           | 
           | 
          const unsigned int  | 
          outputIndex,  | 
        
        
           | 
           | 
          const unsigned int  | 
          outputNoDataValue,  | 
        
        
           | 
           | 
          const bool  | 
          enableProgressInterface  | 
        
        
           | 
          ) | 
           |  | 
        
      
 
Classify an input iterated data and save the result on the output iterated data. 
- Parameters
 - 
  
    | input | Input data to be classified.  | 
    | attributesIndices | The attributes indexes to processe from the iterated train data.  | 
    | inputNoDataValues | A vector of no-data values for each attribute dimension or an empty vector if no-data values are not used.  | 
    | output | Output classified data.  | 
    | outputIndex | The output attribute index.  | 
    | outputNoDataValue | A output label value to use when dealing with input no-data.  | 
    | enableProgressInterface | Enable/disable the use of a proress interfece.  | 
  
   
 
 
◆ getCovMatrixes()
      
        
          | bool te::cl::MaxLikelihood::getCovMatrixes  | 
          ( | 
          std::vector< boost::numeric::ublas::matrix< double > > &  | 
          covMatrixes | ) | 
           const | 
        
      
 
Get the current classes covariance matrixes. 
- Parameters
 - 
  
    | covMatrixes | A vector to return the current classes covariance matrixes.  | 
  
   
- Returns
 - true if ok, false on errors. 
 
 
 
◆ getInverseCovMatrixes()
      
        
          | bool te::cl::MaxLikelihood::getInverseCovMatrixes  | 
          ( | 
          std::vector< boost::numeric::ublas::matrix< double > > &  | 
          invCovMatrixes | ) | 
           const | 
        
      
 
Get the current classes inverse covariance matrixes. 
- Parameters
 - 
  
    | invCovMatrixes | A vector to return the current classes inverse covariance matrixes.  | 
  
   
- Returns
 - true if ok, false on errors. 
 
 
 
◆ getLables()
      
        
          | bool te::cl::MaxLikelihood::getLables  | 
          ( | 
          std::vector< unsigned int > &  | 
          classLabels | ) | 
           const | 
        
      
 
Get the current classes labels. 
- Parameters
 - 
  
    | classesMeans | A vector to return the current classes labels.  | 
  
   
- Returns
 - true if ok, false on errors. 
 
 
 
◆ getMeans()
      
        
          | bool te::cl::MaxLikelihood::getMeans  | 
          ( | 
          std::vector< std::vector< double > > &  | 
          classesMeans | ) | 
           const | 
        
      
 
Get the current classes means. 
- Parameters
 - 
  
    | classesMeans | A vector to return the current classes means.  | 
  
   
- Returns
 - true if ok, false on errors. 
 
 
 
◆ initialize()
      
        
          | bool te::cl::MaxLikelihood::initialize  | 
          ( | 
          const Parameters &  | 
          params | ) | 
           | 
        
      
 
Initialize this classifier instance with new parameters. 
- Parameters
 - 
  
    | params | New initialization parameters.  | 
  
   
 
 
◆ reset()
  
  
      
        
          | void te::cl::MaxLikelihood::reset  | 
          ( | 
           | ) | 
           | 
         
       
   | 
  
protected   | 
  
 
Reset this instance to its initial state. 
 
 
◆ train()
      
        
          | bool te::cl::MaxLikelihood::train  | 
          ( | 
          const InputAdaptor< double > &  | 
          samples,  | 
        
        
           | 
           | 
          const std::vector< unsigned int > &  | 
          attributesIndices,  | 
        
        
           | 
           | 
          const std::vector< unsigned int > &  | 
          sampleLabels,  | 
        
        
           | 
           | 
          const bool  | 
          enableProgressInterface  | 
        
        
           | 
          ) | 
           |  | 
        
      
 
Train this classifier instance using the initialization parameters and the suppied train data. 
- Parameters
 - 
  
    | samples | Train data samples.  | 
    | attributesIndices | The attributes indexes to processe from the iterated train data.  | 
    | sampleLabels | The sample lables for each iterated train data element.  | 
    | enableProgressInterface | Enable/disable the use of a proress interfece.  | 
  
   
 
 
◆ m_classesCovarianceInvMatrixes
  
  
      
        
          | std::vector< boost::numeric::ublas::matrix< double > > te::cl::MaxLikelihood::m_classesCovarianceInvMatrixes | 
         
       
   | 
  
protected   | 
  
 
 
◆ m_classesCovarianceMatrixes
  
  
      
        
          | std::vector< boost::numeric::ublas::matrix< double > > te::cl::MaxLikelihood::m_classesCovarianceMatrixes | 
         
       
   | 
  
protected   | 
  
 
 
◆ m_classesMeans
  
  
      
        
          | std::vector< std::vector< double > > te::cl::MaxLikelihood::m_classesMeans | 
         
       
   | 
  
protected   | 
  
 
 
◆ m_classesOptizedMaxLikelihoodDiscriminantTerm
  
  
      
        
          | std::vector< double > te::cl::MaxLikelihood::m_classesOptizedMaxLikelihoodDiscriminantTerm | 
         
       
   | 
  
protected   | 
  
 
 
◆ m_classLabels
  
  
      
        
          | std::vector<unsigned int> te::cl::MaxLikelihood::m_classLabels | 
         
       
   | 
  
protected   | 
  
 
 
◆ m_isInitialized
  
  
      
        
          | bool te::cl::MaxLikelihood::m_isInitialized | 
         
       
   | 
  
protected   | 
  
 
 
◆ m_parameters
The documentation for this class was generated from the following file:
- /home/castejon/castejon_files/develop/terralib5/git_release/src/terralib/classification/MaxLikelihood.h