26#ifndef __TERRALIB_CLASSIFICATION_INTERNAL_MAXLIKELIHOOD_H 
   27#define __TERRALIB_CLASSIFICATION_INTERNAL_MAXLIKELIHOOD_H 
   30#include "../common/AbstractParameters.h" 
   31#include "../common/MatrixUtils.h" 
   32#include "../common/progress/TaskProgress.h" 
   42#include <boost/numeric/ublas/matrix.hpp> 
   78            AbstractParameters* 
clone() 
const;
 
  101                   const std::vector<unsigned int>& attributesIndices,
 
  102                   const std::vector<unsigned int>& sampleLabels,
 
  103                   const bool enableProgressInterface);
 
  116                      const std::vector<unsigned int>& attributesIndices,
 
  117                      const std::vector< double >& inputNoDataValues,
 
  119                      const unsigned int outputIndex,
 
  120                      const unsigned int outputNoDataValue,
 
  121                      const bool enableProgressInterface);
 
  128        bool getCovMatrixes(  std::vector< boost::numeric::ublas::matrix< double > >& covMatrixes ) 
const;
 
  142        bool getMeans( std::vector< std::vector< double > >& classesMeans ) 
const;
 
  149        bool getLables( std::vector<unsigned int>& classLabels ) 
const;        
 
void reset()
Clear all internal allocated resources and reset the parameters instance to its initial state.
 
const Parameters & operator=(const Parameters ¶ms)
 
AbstractParameters * clone() const
Create a clone copy of this instance.
 
A maximum likelihood estimation strategy for classification (a.k.a. MaxVer in portuguese).
 
bool getLables(std::vector< unsigned int > &classLabels) const
Get the current classes labels.
 
Parameters m_parameters
Internal execution parameters.
 
std::vector< boost::numeric::ublas::matrix< double > > m_classesCovarianceInvMatrixes
Classes covariance inverse matrixes.
 
bool getCovMatrixes(std::vector< boost::numeric::ublas::matrix< double > > &covMatrixes) const
Get the current classes covariance matrixes.
 
bool m_isInitialized
True if this instance is initialized.
 
bool train(const InputAdaptor< double > &samples, const std::vector< unsigned int > &attributesIndices, const std::vector< unsigned int > &sampleLabels, const bool enableProgressInterface)
Train this classifier instance using the initialization parameters and the suppied train data.
 
bool initialize(const Parameters ¶ms)
Initialize this classifier instance with new parameters.
 
std::vector< unsigned int > m_classLabels
class labels
 
void reset()
Reset this instance to its initial state.
 
bool getMeans(std::vector< std::vector< double > > &classesMeans) const
Get the current classes means.
 
bool getInverseCovMatrixes(std::vector< boost::numeric::ublas::matrix< double > > &invCovMatrixes) const
Get the current classes inverse covariance matrixes.
 
std::vector< double > m_classesOptizedMaxLikelihoodDiscriminantTerm
An optimized portion of the MaxLikelihood discriminant function.
 
std::vector< std::vector< double > > m_classesMeans
Classes means;.
 
bool classify(const InputAdaptor< double > &input, const std::vector< unsigned int > &attributesIndices, const std::vector< double > &inputNoDataValues, OutputAdaptor< unsigned int > &output, const unsigned int outputIndex, const unsigned int outputNoDataValue, const bool enableProgressInterface)
Classify an input iterated data and save the result on the output iterated data.
 
std::vector< boost::numeric::ublas::matrix< double > > m_classesCovarianceMatrixes
Classes covariance matrixes.
 
Classifiers output data adaptor.
 
Abstract parameters base interface.
 
#define TECLEXPORT
You can use this macro in order to export/import classes and functions from this module.
 
Proxy configuration file for TerraView (see terraview_config.h).
 
An exception class for the XML module.